Journal of Computer Applications ›› 2026, Vol. 46 ›› Issue (1): 85-94.DOI: 10.11772/j.issn.1001-9081.2025010126
• Data science and technology • Previous Articles Next Articles
Ziyang CHENG1,2, Ruizhang HUANG1,2(
), Jingjing XUE1,2
Received:2025-02-10
Revised:2025-04-29
Accepted:2025-04-29
Online:2026-01-10
Published:2026-01-10
Contact:
Ruizhang HUANG
About author:CHENG Ziyang, born in 2000, M. S. candidate. His research interests include topic information mining, evolutionary clustering.Supported by:通讯作者:
黄瑞章
作者简介:程梓洋(2000—),男,贵州贵阳人,硕士研究生,主要研究方向:主题信息挖掘、演化聚类基金资助:CLC Number:
Ziyang CHENG, Ruizhang HUANG, Jingjing XUE. Deep evolutionary topic clustering model[J]. Journal of Computer Applications, 2026, 46(1): 85-94.
程梓洋, 黄瑞章, 薛菁菁. 深度演化主题聚类模型[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 85-94.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2025010126
| 数据集 | 主题数 | 文档数 | |||
|---|---|---|---|---|---|
| T1 | T2 | T3 | T4 | ||
| BBC_evo | 5 | 835 | 693 | 556 | 41 |
| AMiner_evo | 3 | 1 533 | 943 | 754 | 190 |
| Reuters _evo | 4 | 584 | 4 708 | 3 765 | 943 |
| arXiv | 3 | 15 000 | 15 000 | 15 000 | 15 000 |
Tab. 1 Detailed information of datasets
| 数据集 | 主题数 | 文档数 | |||
|---|---|---|---|---|---|
| T1 | T2 | T3 | T4 | ||
| BBC_evo | 5 | 835 | 693 | 556 | 41 |
| AMiner_evo | 3 | 1 533 | 943 | 754 | 190 |
| Reuters _evo | 4 | 584 | 4 708 | 3 765 | 943 |
| arXiv | 3 | 15 000 | 15 000 | 15 000 | 15 000 |
| 数据集 | 时间片 | 评价指标 | K-means | DTM[ | ToT[ | DEC[ | IDEC[ | DEDC-IMAE[ | DETCM |
|---|---|---|---|---|---|---|---|---|---|
| BBC_evo | T1 | ACC | 98.68 | 40.84 | 42.28 | 96.88 | 97.48 | 97.12 | 98.92 |
| NMI | 95.44 | 50.66 | 48.07 | 92.13 | 92.68 | 92.90 | 96.41 | ||
| ARI | 96.73 | 32.21 | 30.05 | 92.46 | 93.82 | 93.09 | 97.31 | ||
| T2 | ACC | 90.48 | 40.98 | 50.51 | 87.01 | 90.33 | 94.09 | 95.38 | |
| NMI | 80.92 | 32.59 | 45.41 | 72.73 | 74.59 | 82.43 | 85.63 | ||
| ARI | 82.16 | 11.18 | 32.14 | 70.16 | 76.68 | 87.29 | 89.01 | ||
| T3 | ACC | 57.55 | 30.58 | 39.75 | 74.64 | 76.79 | 80.76 | 87.89 | |
| NMI | 45.66 | 12.74 | 30.07 | 52.72 | 53.85 | 65.51 | 69.28 | ||
| ARI | 36.09 | 5.65 | 18.02 | 48.68 | 50.03 | 63.76 | 70.79 | ||
| T4 | ACC | 40.43 | 32.62 | 41.84 | 63.12 | 63.12 | 75.17 | 78.72 | |
| NMI | 25.48 | 7.86 | 18.46 | 47.51 | 48.05 | 57.92 | 67.32 | ||
| ARI | 10.71 | 2.61 | 8.77 | 39.06 | 38.98 | 54.90 | 62.15 | ||
| AMiner_evo | T1 | ACC | 97.46 | 66.01 | 86.30 | 95.52 | 93.32 | 97.26 | 97.59 |
| NMI | 88.55 | 40.19 | 65.60 | 87.03 | 86.13 | 87.85 | 89.09 | ||
| ARI | 92.52 | 21.96 | 61.71 | 90.01 | 88.15 | 91.95 | 92.90 | ||
| T2 | ACC | 94.17 | 53.66 | 77.62 | 92.25 | 90.66 | 94.48 | 95.02 | |
| NMI | 77.48 | 14.84 | 50.81 | 73.20 | 68.35 | 78.19 | 81.02 | ||
| ARI | 82.78 | 9.46 | 40.92 | 77.57 | 73.42 | 83.65 | 85.17 | ||
| T3 | ACC | 71.82 | 49.73 | 69.76 | 85.94 | 87.40 | 90.05 | 92.30 | |
| NMI | 44.59 | 8.66 | 38.63 | 54.78 | 58.36 | 65.48 | 71.32 | ||
| ARI | 43.63 | 5.24 | 26.27 | 61.83 | 65.34 | 72.11 | 77.50 | ||
| T4 | ACC | 51.32 | 37.37 | 58.42 | 72.63 | 71.05 | 77.89 | 78.95 | |
| NMI | 33.29 | 2.30 | 24.51 | 34.08 | 28.15 | 40.80 | 47.29 | ||
| ARI | 27.16 | 1.25 | 11.17 | 36.16 | 31.63 | 44.05 | 45.42 | ||
| Reuters_evo | T1 | ACC | 69.69 | 87.16 | 92.98 | 68.32 | 68.32 | 69.69 | 70.03 |
| NMI | 71.42 | 79.28 | 83.63 | 68.01 | 68.13 | 71.03 | 72.50 | ||
| ARI | 58.17 | 85.37 | 88.22 | 55.34 | 55.31 | 58.17 | 58.91 | ||
| T2 | ACC | 82.05 | 79.01 | 70.94 | 72.53 | 73.55 | 76.25 | 76.47 | |
| NMI | 63.81 | 60.03 | 58.33 | 54.35 | 53.26 | 60.33 | 61.60 | ||
| ARI | 65.61 | 61.72 | 56.83 | 57.13 | 58.14 | 61.37 | 62.07 | ||
| T3 | ACC | 51.47 | 54.37 | 61.65 | 61.72 | 63.13 | 64.70 | 68.15 | |
| NMI | 32.21 | 39.54 | 45.06 | 35.65 | 35.18 | 47.61 | 50.83 | ||
| ARI | 19.17 | 30.87 | 32.47 | 30.63 | 29.72 | 41.25 | 43.00 | ||
| T4 | ACC | 48.78 | 42.74 | 67.34 | 62.21 | 65.64 | 69.17 | 70.91 | |
| NMI | 32.46 | 17.11 | 47.30 | 44.08 | 46.90 | 49.98 | 54.03 | ||
| ARI | 10.62 | 10.48 | 41.24 | 35.44 | 39.02 | 42.07 | 50.67 | ||
| arXiv | T1 | ACC | 80.07 | 55.63 | 83.00 | 86.06 | 85.67 | 86.16 | 86.86 |
| NMI | 51.60 | 21.28 | 50.82 | 56.94 | 55.79 | 58.00 | 57.78 | ||
| ARI | 52.87 | 19.90 | 55.78 | 63.17 | 62.27 | 62.91 | 64.80 | ||
| T2 | ACC | 81.05 | 59.53 | 84.38 | 87.02 | 86.18 | 87.89 | 88.34 | |
| NMI | 53.12 | 36.31 | 52.93 | 57.53 | 55.57 | 60.75 | 62.02 | ||
| ARI | 57.27 | 35.29 | 58.77 | 62.15 | 61.30 | 67.06 | 68.89 | ||
| T3 | ACC | 86.75 | 60.41 | 85.17 | 81.18 | 86.29 | 87.53 | 88.83 | |
| NMI | 57.52 | 30.62 | 54.18 | 48.32 | 58.13 | 60.20 | 63.47 | ||
| ARI | 64.15 | 32.14 | 60.49 | 53.00 | 63.53 | 65.92 | 67.49 | ||
| T4 | ACC | 79.17 | 63.81 | 84.34 | 82.91 | 84.18 | 86.37 | 88.38 | |
| NMI | 52.10 | 40.51 | 53.79 | 49.93 | 55.04 | 59.08 | 62.14 | ||
| ARI | 58.97 | 40.46 | 58.59 | 55.86 | 60.51 | 62.87 | 65.50 |
Tab. 2 Experimental results on all experimental datasets
| 数据集 | 时间片 | 评价指标 | K-means | DTM[ | ToT[ | DEC[ | IDEC[ | DEDC-IMAE[ | DETCM |
|---|---|---|---|---|---|---|---|---|---|
| BBC_evo | T1 | ACC | 98.68 | 40.84 | 42.28 | 96.88 | 97.48 | 97.12 | 98.92 |
| NMI | 95.44 | 50.66 | 48.07 | 92.13 | 92.68 | 92.90 | 96.41 | ||
| ARI | 96.73 | 32.21 | 30.05 | 92.46 | 93.82 | 93.09 | 97.31 | ||
| T2 | ACC | 90.48 | 40.98 | 50.51 | 87.01 | 90.33 | 94.09 | 95.38 | |
| NMI | 80.92 | 32.59 | 45.41 | 72.73 | 74.59 | 82.43 | 85.63 | ||
| ARI | 82.16 | 11.18 | 32.14 | 70.16 | 76.68 | 87.29 | 89.01 | ||
| T3 | ACC | 57.55 | 30.58 | 39.75 | 74.64 | 76.79 | 80.76 | 87.89 | |
| NMI | 45.66 | 12.74 | 30.07 | 52.72 | 53.85 | 65.51 | 69.28 | ||
| ARI | 36.09 | 5.65 | 18.02 | 48.68 | 50.03 | 63.76 | 70.79 | ||
| T4 | ACC | 40.43 | 32.62 | 41.84 | 63.12 | 63.12 | 75.17 | 78.72 | |
| NMI | 25.48 | 7.86 | 18.46 | 47.51 | 48.05 | 57.92 | 67.32 | ||
| ARI | 10.71 | 2.61 | 8.77 | 39.06 | 38.98 | 54.90 | 62.15 | ||
| AMiner_evo | T1 | ACC | 97.46 | 66.01 | 86.30 | 95.52 | 93.32 | 97.26 | 97.59 |
| NMI | 88.55 | 40.19 | 65.60 | 87.03 | 86.13 | 87.85 | 89.09 | ||
| ARI | 92.52 | 21.96 | 61.71 | 90.01 | 88.15 | 91.95 | 92.90 | ||
| T2 | ACC | 94.17 | 53.66 | 77.62 | 92.25 | 90.66 | 94.48 | 95.02 | |
| NMI | 77.48 | 14.84 | 50.81 | 73.20 | 68.35 | 78.19 | 81.02 | ||
| ARI | 82.78 | 9.46 | 40.92 | 77.57 | 73.42 | 83.65 | 85.17 | ||
| T3 | ACC | 71.82 | 49.73 | 69.76 | 85.94 | 87.40 | 90.05 | 92.30 | |
| NMI | 44.59 | 8.66 | 38.63 | 54.78 | 58.36 | 65.48 | 71.32 | ||
| ARI | 43.63 | 5.24 | 26.27 | 61.83 | 65.34 | 72.11 | 77.50 | ||
| T4 | ACC | 51.32 | 37.37 | 58.42 | 72.63 | 71.05 | 77.89 | 78.95 | |
| NMI | 33.29 | 2.30 | 24.51 | 34.08 | 28.15 | 40.80 | 47.29 | ||
| ARI | 27.16 | 1.25 | 11.17 | 36.16 | 31.63 | 44.05 | 45.42 | ||
| Reuters_evo | T1 | ACC | 69.69 | 87.16 | 92.98 | 68.32 | 68.32 | 69.69 | 70.03 |
| NMI | 71.42 | 79.28 | 83.63 | 68.01 | 68.13 | 71.03 | 72.50 | ||
| ARI | 58.17 | 85.37 | 88.22 | 55.34 | 55.31 | 58.17 | 58.91 | ||
| T2 | ACC | 82.05 | 79.01 | 70.94 | 72.53 | 73.55 | 76.25 | 76.47 | |
| NMI | 63.81 | 60.03 | 58.33 | 54.35 | 53.26 | 60.33 | 61.60 | ||
| ARI | 65.61 | 61.72 | 56.83 | 57.13 | 58.14 | 61.37 | 62.07 | ||
| T3 | ACC | 51.47 | 54.37 | 61.65 | 61.72 | 63.13 | 64.70 | 68.15 | |
| NMI | 32.21 | 39.54 | 45.06 | 35.65 | 35.18 | 47.61 | 50.83 | ||
| ARI | 19.17 | 30.87 | 32.47 | 30.63 | 29.72 | 41.25 | 43.00 | ||
| T4 | ACC | 48.78 | 42.74 | 67.34 | 62.21 | 65.64 | 69.17 | 70.91 | |
| NMI | 32.46 | 17.11 | 47.30 | 44.08 | 46.90 | 49.98 | 54.03 | ||
| ARI | 10.62 | 10.48 | 41.24 | 35.44 | 39.02 | 42.07 | 50.67 | ||
| arXiv | T1 | ACC | 80.07 | 55.63 | 83.00 | 86.06 | 85.67 | 86.16 | 86.86 |
| NMI | 51.60 | 21.28 | 50.82 | 56.94 | 55.79 | 58.00 | 57.78 | ||
| ARI | 52.87 | 19.90 | 55.78 | 63.17 | 62.27 | 62.91 | 64.80 | ||
| T2 | ACC | 81.05 | 59.53 | 84.38 | 87.02 | 86.18 | 87.89 | 88.34 | |
| NMI | 53.12 | 36.31 | 52.93 | 57.53 | 55.57 | 60.75 | 62.02 | ||
| ARI | 57.27 | 35.29 | 58.77 | 62.15 | 61.30 | 67.06 | 68.89 | ||
| T3 | ACC | 86.75 | 60.41 | 85.17 | 81.18 | 86.29 | 87.53 | 88.83 | |
| NMI | 57.52 | 30.62 | 54.18 | 48.32 | 58.13 | 60.20 | 63.47 | ||
| ARI | 64.15 | 32.14 | 60.49 | 53.00 | 63.53 | 65.92 | 67.49 | ||
| T4 | ACC | 79.17 | 63.81 | 84.34 | 82.91 | 84.18 | 86.37 | 88.38 | |
| NMI | 52.10 | 40.51 | 53.79 | 49.93 | 55.04 | 59.08 | 62.14 | ||
| ARI | 58.97 | 40.46 | 58.59 | 55.86 | 60.51 | 62.87 | 65.50 |
| 时间片 | 评价指标 | DTCM | DETCM | |||
|---|---|---|---|---|---|---|
| 无类簇对比 | 有类簇对比 | 线性融合 | 无类簇对比 | 有类簇对比 | ||
| T1 | ACC | 98.92 | 98.92 | 96.28 | 98.92 | 98.92 |
| NMI | 96.41 | 96.41 | 90.99 | 96.41 | 96.41 | |
| ARI | 97.31 | 97.31 | 90.83 | 97.31 | 97.31 | |
| T2 | ACC | 90.47 | 91.21 | 89.75 | 94.80 | 95.38 |
| NMI | 74.42 | 78.93 | 76.29 | 84.57 | 85.63 | |
| ARI | 77.83 | 80.66 | 79.41 | 87.96 | 89.01 | |
| T3 | ACC | 77.51 | 78.17 | 81.11 | 85.43 | 87.89 |
| NMI | 51.21 | 54.33 | 64.55 | 66.59 | 69.28 | |
| ARI | 54.93 | 55.40 | 64.06 | 69.05 | 70.79 | |
| T4 | ACC | 60.99 | 65.95 | 67.37 | 70.17 | 78.72 |
| NMI | 44.94 | 48.03 | 53.89 | 54.00 | 67.32 | |
| ARI | 40.01 | 41.65 | 48.56 | 52.94 | 62.15 | |
Tab. 3 Results of DETCM ablation experiments on BBC_evo dataset
| 时间片 | 评价指标 | DTCM | DETCM | |||
|---|---|---|---|---|---|---|
| 无类簇对比 | 有类簇对比 | 线性融合 | 无类簇对比 | 有类簇对比 | ||
| T1 | ACC | 98.92 | 98.92 | 96.28 | 98.92 | 98.92 |
| NMI | 96.41 | 96.41 | 90.99 | 96.41 | 96.41 | |
| ARI | 97.31 | 97.31 | 90.83 | 97.31 | 97.31 | |
| T2 | ACC | 90.47 | 91.21 | 89.75 | 94.80 | 95.38 |
| NMI | 74.42 | 78.93 | 76.29 | 84.57 | 85.63 | |
| ARI | 77.83 | 80.66 | 79.41 | 87.96 | 89.01 | |
| T3 | ACC | 77.51 | 78.17 | 81.11 | 85.43 | 87.89 |
| NMI | 51.21 | 54.33 | 64.55 | 66.59 | 69.28 | |
| ARI | 54.93 | 55.40 | 64.06 | 69.05 | 70.79 | |
| T4 | ACC | 60.99 | 65.95 | 67.37 | 70.17 | 78.72 |
| NMI | 44.94 | 48.03 | 53.89 | 54.00 | 67.32 | |
| ARI | 40.01 | 41.65 | 48.56 | 52.94 | 62.15 | |
| 论文领域 | T1 | T2 | T3 | T4 |
|---|---|---|---|---|
| 物理 | equation solution theory brane gauge field quark decay cloaking microstructure | superconducting decay field mass theory gauge cloaking wettability pluripolar photon | energy quantum field theory equation decay mass quark gauge spectrum | higgs quantum spectrum decay mass particle quark photon wave energy |
| 计算机科学 | algorithm reranker network code channel lut propose selection scheme channel | encoding channel network precoding datum method propose learning model wiretapper | algorithm image network method propose control datum task efficient model | model datum code learning language network performance algorithm propose multimodal |
| 数学 | algebra euler graphon homotopically nll find discovery gevrey contractile prove | equation algebra prove subgroup approximation approach solution isometry continuous vertex | algebra group graphon triangulate homotopically prove compact subgroup inequality space | equation solution problem choquet algorithm nonlinear prove algebra system inequality |
Tab. 4 Evolving topic words captured by DETCM on arXiv dataset.
| 论文领域 | T1 | T2 | T3 | T4 |
|---|---|---|---|---|
| 物理 | equation solution theory brane gauge field quark decay cloaking microstructure | superconducting decay field mass theory gauge cloaking wettability pluripolar photon | energy quantum field theory equation decay mass quark gauge spectrum | higgs quantum spectrum decay mass particle quark photon wave energy |
| 计算机科学 | algorithm reranker network code channel lut propose selection scheme channel | encoding channel network precoding datum method propose learning model wiretapper | algorithm image network method propose control datum task efficient model | model datum code learning language network performance algorithm propose multimodal |
| 数学 | algebra euler graphon homotopically nll find discovery gevrey contractile prove | equation algebra prove subgroup approximation approach solution isometry continuous vertex | algebra group graphon triangulate homotopically prove compact subgroup inequality space | equation solution problem choquet algorithm nonlinear prove algebra system inequality |
| 方法 | 耗时/s |
|---|---|
| K-means | 6.31 |
| DTM[ | 452.34 |
| ToT[ | 23.70 |
| DEC[ | 29.31 |
| IDEC[ | 30.19 |
| DEDC-IMAE[ | 266.30 |
| DTCM(无类簇对比) | 306.83 |
| DTCM | 176.82 |
| DETCM(无类簇对比) | 393.89 |
| DETCM(线性融合) | 415.03 |
| DETCM | 500.66 |
Tab. 5 Statistics of time consumption
| 方法 | 耗时/s |
|---|---|
| K-means | 6.31 |
| DTM[ | 452.34 |
| ToT[ | 23.70 |
| DEC[ | 29.31 |
| IDEC[ | 30.19 |
| DEDC-IMAE[ | 266.30 |
| DTCM(无类簇对比) | 306.83 |
| DTCM | 176.82 |
| DETCM(无类簇对比) | 393.89 |
| DETCM(线性融合) | 415.03 |
| DETCM | 500.66 |
| [1] | BAI R, HUANG R, CHEN Y, et al. Deep multi-view document clustering with enhanced semantic embedding [J]. Information Sciences, 2021, 564: 273-287. |
| [2] | REN L, QIN Y, CHEN Y, et al. Deep structural enhanced network for document clustering [J]. Applied Intelligence, 2023, 53(10): 12163-12178. |
| [3] | BO D, WANG X, SHI C, et al. Structural deep clustering network [C]// Proceedings of the Web Conference 2020. New York: ACM, 2020: 1400-1410. |
| [4] | PENG Z, LIU H, JIA Y, et al. Attention-driven graph clustering network [C]// Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 935-943. |
| [5] | XIE J, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis [C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 478-487. |
| [6] | KINGMA D P, WELLING M. Auto-encoding variational Bayes [EB/OL]. [2025-03-17]. . |
| [7] | XU Q, GU H, JI S. Text clustering based on pre-trained models and autoencoders [J]. Frontiers in Computational Neuroscience, 2024, 17: No.1334436. |
| [8] | PETUKHOVA A, MATOS-CARVALHO J P, FACHADA N. Text clustering with large language model embeddings [J]. International Journal of Cognitive Computing in Engineering, 2025, 6: 100-108. |
| [9] | LU H, CHENG Z, HUANG R, et al. DEDC-IMAE: a deep evolutionary document clustering model with inherited mixed autoencoder [J]. Information Sciences, 2024, 678: No.120880. |
| [10] | GERARD P, VOLKOVA S, PENAFIEL L, et al. Modeling information narrative detection and evolution on Telegram during the Russia-Ukraine war [C]// Proceedings of the 19th International AAAI Conference on Web and Social Media. Palo Alto: AAAI Press, 2025: 602-614. |
| [11] | LIU K, HE J, CHEN Y. A topic-enhanced Dirichlet model for short text stream clustering [J]. Neural Computing and Applications, 2024, 36(14): 8125-8140. |
| [12] | XU W, LI Y, QIANG J. Dynamic clustering for short text stream based on Dirichlet process [J]. Applied Intelligence, 2022, 52(4): 4651-4662. |
| [13] | GU B, KARGAR S, NAWAB F. Efficient dynamic clustering: capturing patterns from historical cluster evolution [C]// Proceedings of the 25th International Conference on Extending Database Technology. [S.l.]: OpenProceedings.org, 2022: 351-363. |
| [14] | YOU J, HU C, KAMIGAITO H, et al. Robust dynamic clustering for temporal networks [C]// Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York: ACM, 2021: 2424-2433. |
| [15] | CHAKRABARTI D, KUMAR R, TOMKINS A. Evolutionary clustering [C]// Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2006: 554-560. |
| [16] | CHI Y, SONG X, ZHOU D, et al. Evolutionary spectral clustering by incorporating temporal smoothness [C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2007: 153-162. |
| [17] | XU K S, KLIGER M, HERO A O, III. Adaptive evolutionary clustering [J]. Data Mining and Knowledge Discovery, 2014, 28(2): 304-336. |
| [18] | BLEI D M, LAFFERTY J D. Dynamic topic models [C]// Proceedings of the 23rd International Conference on Machine Learning. New York: ACM, 2006: 113-120. |
| [19] | JELODAR H, WANG Y, YUAN C, et al. Latent Dirichlet Allocation (LDA) and topic modeling: models, applications, a survey [J]. Multimedia Tools and Applications, 2019, 78(11): 15169-15211. |
| [20] | WANG X, McCALLUM A. Topics over time: a non-Markov continuous-time model of topical trends [C]// Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2006: 424-433. |
| [21] | 宋凯,陈悦.技术主题动态演化分析的一种新方法: DPL-BMM模型[J].情报学报, 2024, 43(1): 25-33. |
| SONG K, CHEN Y. New approach for the dynamic evolution analysis of technology topics: DPL-BMM [J]. Journal of the China Society for Scientific and Technical Information, 2024, 43(1): 25-33. | |
| [22] | DIENG A B, RUIZ F J R, BLEI D M. Topic modeling in embedding spaces [J]. Transactions of the Association for Computational Linguistics, 2020, 8: 439-453. |
| [23] | DIENG A B, RUIZ F J R, BLEI D M. The dynamic embedded topic model [EB/OL]. [2025-03-17]. . |
| [24] | GUO X, GAO L, LIU X, et al. Improved deep embedded clustering with local structure preservation [C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2017: 1753-1759. |
| [25] | LIU M, LIU Y, LIANG K, et al. Deep temporal graph clustering [EB/OL]. [2025-03-17]. . |
| [26] | YAN Y, LU N, YAN R. Deep online probability aggregation clustering [C]// Proceedings of the 2024 European Conference on Computer Vision, LNCS 15111. Cham: Springer, 2025: 37-54. |
| [27] | CHAZAN S E, GANNOT S, GOLDBERGER J. Deep clustering based on a mixture of autoencoders [C]// Proceedings of the IEEE 29th International Workshop on Machine Learning for Signal Processing. Piscataway: IEEE, 2019: 1-6. |
| [28] | MADIRAJU N S, SADAT S M, FISHER D. Deep temporal clustering: fully unsupervised learning of time-domain features [EB/OL]. [2025-03-17]. . |
| [29] | PANTULA P D, MIRIYALA S S, MITRA K. A deep unsupervised learning algorithm for dynamic data clustering [C]// Proceedings of the 7th Indian Control Conference. Piscataway: IEEE, 2021: 147-152. |
| [1] | Wen LI, Kairong LI, Kai YANG. Subgraph-aware contrastive learning with data augmentation [J]. Journal of Computer Applications, 2026, 46(1): 1-9. |
| [2] | Xingyao YANG, Zheng QI, Jiong YU, Zulian ZHANG, Shuai MA, Hongtao SHEN. Session-based recommendation model based on time-aware and space-enhanced dual channel graph neural network [J]. Journal of Computer Applications, 2026, 46(1): 104-112. |
| [3] | Zhixiong XU, Bo LI, Xiaoyong BIAN, Qiren HU. Adversarial sample embedded attention U-Net for 3D medical image segmentation [J]. Journal of Computer Applications, 2025, 45(9): 3011-3016. |
| [4] | Penghuan QU, Wei WEI, Jing YAN, Feng WANG. Dual imputation based incomplete multi-view metric learning [J]. Journal of Computer Applications, 2025, 45(9): 2755-2763. |
| [5] | Chao LIU, Yanhua YU. Knowledge-aware recommendation model combining denoising strategy and multi-view contrastive learning [J]. Journal of Computer Applications, 2025, 45(9): 2827-2837. |
| [6] | Yi WANG, Yinglong MA. Multi-task social item recommendation method based on dynamic adaptive generation of item graph [J]. Journal of Computer Applications, 2025, 45(8): 2592-2599. |
| [7] | Zhiyuan WANG, Tao PENG, Jie YANG. Integrating internal and external data for out-of-distribution detection training and testing [J]. Journal of Computer Applications, 2025, 45(8): 2497-2506. |
| [8] | Jin XIE, Surong CHU, Yan QIANG, Juanjuan ZHAO, Hua ZHANG, Yong GAO. Dual-branch distribution consistency contrastive learning model for hard negative sample identification in chest X-rays [J]. Journal of Computer Applications, 2025, 45(7): 2369-2377. |
| [9] | Zhenzhou WANG, Fangfang GUO, Jingfang SU, He SU, Jianchao WANG. Robustness optimization method of visual model for intelligent inspection [J]. Journal of Computer Applications, 2025, 45(7): 2361-2368. |
| [10] | Haijie WANG, Guangxin ZHANG, Hai SHI, Shu CHEN. Document-level relation extraction based on entity representation enhancement [J]. Journal of Computer Applications, 2025, 45(6): 1809-1816. |
| [11] | Mingfeng YU, Yongbin QIN, Ruizhang HUANG, Yanping CHEN, Chuan LIN. Multi-label text classification method based on contrastive learning enhanced dual-attention mechanism [J]. Journal of Computer Applications, 2025, 45(6): 1732-1740. |
| [12] | Wenjing YAN, Ruidong WANG, Min ZUO, Qingchuan ZHANG. Recipe recommendation model based on hierarchical learning of flavor embedding heterogeneous graph [J]. Journal of Computer Applications, 2025, 45(6): 1869-1878. |
| [13] | Chaoying JIANG, Qian LI, Ning LIU, Lei LIU, Lizhen CUI. Readmission prediction model based on graph contrastive learning [J]. Journal of Computer Applications, 2025, 45(6): 1784-1792. |
| [14] | Wenbin HU, Tianxiang CAI, Tianle HAN, Zhaoman ZHONG, Changxia MA. Multimodal sarcasm detection model integrating contrastive learning with sentiment analysis [J]. Journal of Computer Applications, 2025, 45(5): 1432-1438. |
| [15] | Yufei LONG, Yuchen MOU, Ye LIU. Multi-source data representation learning model based on tensorized graph convolutional network and contrastive learning [J]. Journal of Computer Applications, 2025, 45(5): 1372-1378. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||