Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (7): 2052-2057.DOI: 10.11772/j.issn.1001-9081.2021060904
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Bo LIU, Linbo QING, Zhengyong WANG(), Mei LIU, Xue JIANG
Received:
2021-06-03
Revised:
2021-09-11
Accepted:
2021-09-24
Online:
2021-10-18
Published:
2022-07-10
Contact:
Zhengyong WANG
About author:
LIU Bo, born in 1997, M. S. candidate. His research interests include computer vision.Supported by:
通讯作者:
王正勇
作者简介:
刘博(1997—),男,河南许昌人,硕士研究生,CCF会员,主要研究方向:计算机视觉基金资助:
CLC Number:
Bo LIU, Linbo QING, Zhengyong WANG, Mei LIU, Xue JIANG. Group activity recognition based on partitioned attention mechanism and interactive position relationship[J]. Journal of Computer Applications, 2022, 42(7): 2052-2057.
刘博, 卿粼波, 王正勇, 刘美, 姜雪. 基于分块注意力机制和交互位置关系的群组活动识别[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2052-2057.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021060904
本文方法 |
Tab. 1 Accuracies of different methods on CAD dataset
本文方法 |
Tab. 2 Accuracies of different methods on CAE dataset
类别准确率 | |||||||
---|---|---|---|---|---|---|---|
Crossing | Waiting | Queuing | Walking | Talking | |||
Tab. 3 Accuracy comparison of the proposed method and baseline methods on CAD dataset
类别准确率 | |||||||
---|---|---|---|---|---|---|---|
Crossing | Waiting | Queuing | Walking | Talking | |||
Tab. 4 Accuracy comparison of the proposed method and baseline methods on CAE dataset
1 | TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 4489-4497. 10.1109/iccv.2015.510 |
2 | WANG L M, LI W, LI W, et al. Appearance-and-relation networks for video classification[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1430-1439. 10.1109/cvpr.2018.00155 |
3 | IBRAHIM M S, MURALIDHARAN S, DENG Z W, et al. A hierarchical deep temporal model for group activity recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1971-1980. 10.1109/cvpr.2016.217 |
4 | CHOI W, SHAHID K, SAVARESE S. What are they doing?: collective activity classification using spatio-temporal relationship among people[C]// Proceedings of the IEEE 12th International Conference on Computer Vision Workshops. Piscataway: IEEE, 2009: 1282-1289. 10.1109/iccvw.2009.5457461 |
5 | BAGAUTDINOV T, ALAHI A, FLEURET F, et al. Social scene understanding: end-to-end multi-person action localization and collective activity recognition[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3425-3434. 10.1109/cvpr.2017.365 |
6 | WU J C, WANG L M, WANG L, et al. Learning actor relation graphs for group activity recognition[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9956-9966. 10.1109/cvpr.2019.01020 |
7 | YAN R, TANG J H, SHU X B, et al. Participation-contributed temporal dynamic model for group activity recognition[C]// Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 1292-1300. 10.1145/3240508.3240572 |
8 | 杨兴明,范楼苗. 基于区域特征融合网络的群组行为识别[J]. 模式识别与人工智能, 2019, 32(12): 1116-1121. |
YANG X M, FAN L M. Group activity recognition based on regional feature fusion network[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(12): 1116-1121. | |
9 | 龚玉婷. 基于注意力机制与深度学习网络的群组行为识别方法研究[D]. 青岛:青岛科技大学, 2019:28-29. |
GONG Y T. Group activity recognition algorithm research based on attention mechanism and deep learning network[D]. Qingdao: Qingdao University of Science and Technology, 2019:28-29. | |
10 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. 10.1109/cvpr.2016.308 |
11 | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. 10.1109/iccv.2017.322 |
12 | LU L H, DI H J, LU Y, et al. Spatio-temporal attention mechanisms based model for collective activity recognition[J]. Signal Processing: Image Communication, 2019, 74: 162-174. 10.1016/j.image.2019.02.012 |
13 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2020-11-16].. |
14 | QI M S, QIN J, LI A N, et al. StagNet: an attentive semantic RNN for group activity recognition[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11214. Cham: Springer, 2018: 104-120. |
15 | CHOI W, SHAHID K, SAVARESE S. Learning context for collective activity recognition[C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2011: 3273-3280. 10.1109/cvpr.2011.5995707 |
16 | LI X, CHUAH M C. SBGAR: semantics based group activity recognition[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2895-2904. 10.1109/iccv.2017.313 |
17 | SHU T M, TODOROVIC S, ZHU S C. CERN: confidence-energy recurrent network for group activity recognition[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4255-4263. 10.1109/cvpr.2017.453 |
18 | XU D Z, FU H, WU L F, et al. Group activity recognition by using effective multiple modality relation representation with temporal-spatial attention[J]. IEEE Access, 2020, 8: 65689-65698. 10.1109/access.2020.2979742 |
19 | HU G Y, CUI B, HE Y, et al. Progressive relation learning for group activity recognition[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 977-986. 10.1109/cvpr42600.2020.00106 |
20 | DENG Z W, VAHDAT A, HU H X, et al. Structure inference machines: recurrent neural networks for analyzing relations in group activity recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 4772-4781. 10.1109/cvpr.2016.516 |
21 | LI W B, CHANG M C, LYU S W. Who did what at where and when: simultaneous multi-person tracking and activity recognition[EB/OL]. (2018-07-03) [2020-10-09].. 10.1016/j.cviu.2021.103301 |
[1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[2] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[3] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[4] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[5] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. |
[6] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[7] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[8] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[9] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[10] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[11] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[12] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[13] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[14] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[15] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||