Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (3): 785-793.DOI: 10.11772/j.issn.1001-9081.2024050570
• Frontier research and typical applications of large models • Previous Articles Next Articles
Yan YANG1, Feng YE1,2(), Dong XU2,3, Xuejie ZHANG1, Jin XU2,3,4
Received:
2024-05-09
Revised:
2024-08-03
Accepted:
2024-08-08
Online:
2025-03-17
Published:
2025-03-10
Contact:
Feng YE
About author:
YANG Yan, born in 1999, M. S. candidate. Her research interests include knowledge graph construction, data mining.Supported by:
杨燕1, 叶枫1,2(), 许栋2,3, 张雪洁1, 徐津2,3,4
通讯作者:
叶枫
作者简介:
杨燕(1999—),女,江西宜春人,硕士研究生,CCF会员,主要研究方向:知识图谱构建、数据挖掘基金资助:
CLC Number:
Yan YANG, Feng YE, Dong XU, Xuejie ZHANG, Jin XU. Construction of digital twin water conservancy knowledge graph integrating large language model and prompt learning[J]. Journal of Computer Applications, 2025, 45(3): 785-793.
杨燕, 叶枫, 许栋, 张雪洁, 徐津. 融合大语言模型和提示学习的数字孪生水利知识图谱构建[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 785-793.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050570
标准实体 | 待融合实体 |
---|---|
GIS引擎 | GIS软件、地理信息系统软件、地理信息系统引擎 |
新安江模型 | 新安江水文模型、Xin’anjiang Model |
钱塘江流域 | 钱塘江水域、Qiantang River Basin |
Tab. 1 Heterologous entities (part)
标准实体 | 待融合实体 |
---|---|
GIS引擎 | GIS软件、地理信息系统软件、地理信息系统引擎 |
新安江模型 | 新安江水文模型、Xin’anjiang Model |
钱塘江流域 | 钱塘江水域、Qiantang River Basin |
标签编号 | 标签名称 | 标记名称 | 标签编号 | 标签名称 | 标记名称 |
---|---|---|---|---|---|
1 | 物理水利对象 | PO | 10 | 引擎 | ENG |
2 | 数字孪生对象 | DSO | 11 | 模拟 | SIM |
3 | 部门 | DEPT | 12 | 支持 | SUP |
4 | 业务 | BIZ | 13 | 包括 | INC |
5 | 信息基础设施 | INFO | 14 | 实现 | IMP |
6 | 平台 | PLT | 15 | 依赖 | DEP |
7 | 数据底板 | DATA | 16 | 执行 | EXE |
8 | 模型 | MOD | 17 | 来源 | ORIG |
9 | 知识 | KNOW | 18 | 影响 | INF |
Tab. 2 Label table
标签编号 | 标签名称 | 标记名称 | 标签编号 | 标签名称 | 标记名称 |
---|---|---|---|---|---|
1 | 物理水利对象 | PO | 10 | 引擎 | ENG |
2 | 数字孪生对象 | DSO | 11 | 模拟 | SIM |
3 | 部门 | DEPT | 12 | 支持 | SUP |
4 | 业务 | BIZ | 13 | 包括 | INC |
5 | 信息基础设施 | INFO | 14 | 实现 | IMP |
6 | 平台 | PLT | 15 | 依赖 | DEP |
7 | 数据底板 | DATA | 16 | 执行 | EXE |
8 | 模型 | MOD | 17 | 来源 | ORIG |
9 | 知识 | KNOW | 18 | 影响 | INF |
任务 | 模型 | 精确率 | 召回率 | F1值 |
---|---|---|---|---|
实体 抽取 | BiLSTM-CRF | 76.280 | 71.775 | 73.959 |
UIE-base | 82.082 | 80.077 | 81.067 | |
ChatGLM2-6B | 84.661 | 81.572 | 83.088 | |
DTKE-ChatGLM2-6B | 90.112 | 87.195 | 88.630 | |
关系 抽取 | UIE-base | 79.907 | 70.475 | 74.895 |
ChatGLM2-6B | 81.554 | 80.970 | 81.261 | |
DTKE-ChatGLM2-6B | 86.125 | 82.854 | 84.458 |
Tab. 3 Performance comparison of different models in entity extraction and relationship extraction tasks
任务 | 模型 | 精确率 | 召回率 | F1值 |
---|---|---|---|---|
实体 抽取 | BiLSTM-CRF | 76.280 | 71.775 | 73.959 |
UIE-base | 82.082 | 80.077 | 81.067 | |
ChatGLM2-6B | 84.661 | 81.572 | 83.088 | |
DTKE-ChatGLM2-6B | 90.112 | 87.195 | 88.630 | |
关系 抽取 | UIE-base | 79.907 | 70.475 | 74.895 |
ChatGLM2-6B | 81.554 | 80.970 | 81.261 | |
DTKE-ChatGLM2-6B | 86.125 | 82.854 | 84.458 |
任务 | 操作 | 精确率 | 召回率 | F1值 |
---|---|---|---|---|
实体 抽取 | 完整方法 | 90.112 | 87.195 | 88.630 |
不注入领域知识 | 88.291 | 87.055 | 87.669 | |
无知识抽取prompt | 85.276 | 84.332 | 84.801 | |
无实体对齐prompt | 89.157 | 86.002 | 87.551 | |
关系 抽取 | 完整方法 | 86.125 | 82.854 | 84.458 |
不注入领域知识 | 85.245 | 81.347 | 83.250 | |
无知识抽取prompt | 82.007 | 81.256 | 81.630 | |
无实体对齐prompt | 86.025 | 82.854 | 84.410 |
Tab. 4 Ablation experiment results of entity extraction andrelationship extraction
任务 | 操作 | 精确率 | 召回率 | F1值 |
---|---|---|---|---|
实体 抽取 | 完整方法 | 90.112 | 87.195 | 88.630 |
不注入领域知识 | 88.291 | 87.055 | 87.669 | |
无知识抽取prompt | 85.276 | 84.332 | 84.801 | |
无实体对齐prompt | 89.157 | 86.002 | 87.551 | |
关系 抽取 | 完整方法 | 86.125 | 82.854 | 84.458 |
不注入领域知识 | 85.245 | 81.347 | 83.250 | |
无知识抽取prompt | 82.007 | 81.256 | 81.630 | |
无实体对齐prompt | 86.025 | 82.854 | 84.410 |
1 | 黄艳,喻杉,罗斌,等. 面向流域水工程防灾联合智能调度的数字孪生长江探索[J]. 水利学报, 2022, 53(3): 253-269. |
HUANG Y, YU S, LUO B, et al. Development of the digital twin Changjiang River with the pilot system of joint and intelligent regulation of water projects for flood management [J]. Journal of Hydraulic Engineering, 2022, 53(3): 253-269. | |
2 | LI F L, CHEN H, XU G, et al. AliMeKG: domain knowledge graph construction and application in e-commerce [C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 2581-2588. |
3 | NICHOLSON D N, GREENE C S. Constructing knowledge graphs and their biomedical applications [J]. Computational and Structural Biotechnology Journal, 2020, 18: 1414-1428. |
4 | ZEHRA S, MOHSIN S F M, WASI S, et al. Financial knowledge graph based financial report query system [J]. IEEE Access, 2021, 9: 69766-69782. |
5 | XU N, MA L, WANG L, et al. Extracting domain knowledge elements of construction safety management: rule-based approach using Chinese natural language processing [J]. Journal of Management in Engineering, 2021, 37(2): No.0000870. |
6 | DHAL P, AZAD C. A comprehensive survey on feature selection in the various fields of machine learning [J]. Applied Intelligence, 2022, 52(4): 4543-4581. |
7 | LUO L, YANG Z, CAO M, et al. A neural network-based joint learning approach for biomedical entity and relation extraction from biomedical literature [J]. Journal of Biomedical Informatics, 2020, 103: No.103384. |
8 | 张钦彤,王昱超,王鹤羲,等. 大语言模型微调技术的研究综述[J].计算机工程与应用, 2024, 60(17):17-33. |
ZHANG Q T, WANG Y C, WANG H X, et al. Comprehensive review of large language model fine-tuning [J]. Computer Engineering and Applications, 2024, 60(17):17-33. | |
9 | 段浩,韩昆,赵红莉,等. 水利综合知识图谱构建研究[J]. 水利学报, 2021, 52(8): 948-958. |
DUAN H, HAN K, ZHAO H L, et al. Research on water conservancy comprehensive knowledge graph construction [J]. Journal of Hydraulic Engineering, 2021, 52(8): 948-958. | |
10 | 冯钧,杭婷婷,陈菊,等. 领域知识图谱研究进展及其在水利领域的应用[J]. 河海大学学报(自然科学版), 2021, 49(1): 26-34. |
FENG J, HANG T T, CHEN J, et al. Research status of domain knowledge graph and its application in water conservancy[J]. Journal of Hohai University (Natural Sciences), 2021, 49(1): 26-34. | |
11 | WANG Y, YE F, LI B, et al. UrbanFloodKG: an urban flood knowledge graph system for risk assessment [C]// Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 2574-2584. |
12 | 刘雪梅,卢汉康,李海瑞,等. 知识驱动的水利工程应急方案智能生成方法—以南水北调中线工程为例[J]. 水利学报, 2023, 54(6): 666-676. |
LIU X M, LU H K, LI H R, et al. A knowledge-driven approach for intelligent generation of hydraulic engineering contingency plans: a case study of the Middle Route of South-to-North Water Diversion Project [J]. Journal of Hydraulic Engineering, 2023, 54(6): 666-676. | |
13 | MARTINEZ-RODRIGUEZ J L, HOGAN A, LOPEZ-AREVALO I. Information extraction meets the semantic Web: a survey [J]. Semantic Web, 2020, 11(2): 255-335. |
14 | 付雷杰,曹岩,白瑀,等. 国内垂直领域知识图谱发展现状与展望[J]. 计算机应用研究, 2021, 38(11):3201-3214. |
FU L J, CAO Y, BAI Y, et al. Development status and prospect of vertical domain knowledge graph in China [J]. Application Research of Computers, 2021, 38(11): 3201-3214. | |
15 | GENG Z, CHEN G, HAN Y, et al. Semantic relation extraction using sequential and tree-structured LSTM with attention [J]. Information Sciences, 2020, 509: 183-192. |
16 | ZHANG S, LI Y, LI S, et al. Bi-LSTM-CRF network for clinical event extraction with medical knowledge features [J]. IEEE Access, 2022, 10: 110100-110109. |
17 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
18 | ROY A, PAN S. Incorporating medical knowledge in BERT for clinical relation extraction [C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 5357-5366. |
19 | GOEL A, GUETA A, GILON O, et al. LLMs accelerate annotation for medical information extraction [C]// Proceedings of the 3rd Machine Learning for Health Symposium. New York: JMLR.org, 2023: 82-100. |
20 | CHODAK G, BŁAŻYCZEK K. Large language models for search engine optimization in e-commerce [C]// Proceedings of the 2023 International Advanced Computing Conference. Cham: Springer, 2024: 333-344. |
21 | 叶名玮,汤嘉,郭燕,等. 基于大语言模型的命名实体识别[J]. 计算机系统应用, 2024, 33(8): 257-263. |
YE M W, TANG J, GUO Y, et al. Named entity recognition based on large language model [J]. Computer Systems and Applications, 2024, 33(8): 257-263. | |
22 | 裴炳森,李欣,蒋章涛,等. 基于大语言模型的公安专业小样本知识抽取方法研究[J]. 计算机科学与探索, 2024, 18(10): 2630-2642. |
PEI B S, LI X, JIANG Z T, et al. Research on public security professional small sample knowledge extraction method based on large language model [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(10): 2630-2642. | |
23 | 彭雪,李正华,张民. 基于语言模型微调的跨领域依存句法分析[J]. 计算机应用与软件, 2022, 39(7):141-146. |
PENG X, LI Z H, ZHANG M. Cross domain dependency parsing based on fine tuning of language model [J]. Computer Applications and Software, 2022, 39(7):141-146. | |
24 | MALLADI S, GAO T, NICHANI E, et al. Fine-tuning language models with just forward passes [C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 53038-53075. |
25 | MAYER C W F, LUDWIG S, BRANDT S. Prompt text classifications with transformer models! an exemplary introduction to prompt-based learning with large language models[J]. Journal of Research on Technology in Education, 2023, 55(1): 125-141. |
26 | WU H, MA B, LIU W, et al. Fast and constrained absent keyphrase generation by prompt-based learning [C]// Proceedings of the 26th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 11495-11503. |
27 | YE F, HUANG L, LIANG S, et al. Decomposed two-stage prompt learning for few-shot named entity recognition [J]. Information, 2023, 14(5): No.262. |
28 | CHEN X, ZHANG N, XIE X, et al. KnowPrompt: knowledge-aware prompt-tuning with synergistic optimization for relation extraction [C]// Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2778-2788. |
29 | JEONG C. Generative AI service implementation using LLM application architecture: based on RAG model and LangChain framework [J]. Journal of Intelligence and Information Systems, 2023, 29(4): 129-164. |
30 | WANG H, WANG Y, LI J, et al. Degree aware based adversarial graph convolutional networks for entity alignment in heterogeneous knowledge graph [J]. Neurocomputing, 2022, 487: 99-109. |
31 | IKOTUN A M, EZUGWU A E, ABUALIGAH L, et al. K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data [J]. Information Sciences, 2023, 622: 178-210. |
32 | 刘婧茹,宋阳,贾睿,等. 基于BiLSTM-CRF中文临床文本中受保护的健康信息识别[J]. 数据分析与知识发现, 2020, 4(10):124-133. |
LIU J R, SONG Y, JIA R, et al. A BiLSTM-CRF model for protected health information in Chinese [J]. Data Analysis and Knowledge Discovery, 2020, 4(10): 124-133. | |
33 | FEI H, WU S, LI J, et al. LasUIE: unifying information extraction with latent adaptive structure-aware generative language model [C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 15460-15475. |
[1] | Jing HE, Yang SHEN, Runfeng XIE. Recognition and optimization of hallucination phenomena in large language models [J]. Journal of Computer Applications, 2025, 45(3): 709-714. |
[2] | Yanmin DONG, Jiajia LIN, Zheng ZHANG, Cheng CHENG, Jinze WU, Shijin WANG, Zhenya HUANG, Qi LIU, Enhong CHEN. Design and practice of intelligent tutoring algorithm based on personalized student capability perception [J]. Journal of Computer Applications, 2025, 45(3): 765-772. |
[3] | Xuefei ZHANG, Liping ZHANG, Sheng YAN, Min HOU, Yubo ZHAO. Personalized learning recommendation in collaboration of knowledge graph and large language model [J]. Journal of Computer Applications, 2025, 45(3): 773-784. |
[4] | Peng CAO, Guangqi WEN, Jinzhu YANG, Gang CHEN, Xinyi LIU, Xuechun JI. Efficient fine-tuning method of large language models for test case generation [J]. Journal of Computer Applications, 2025, 45(3): 725-731. |
[5] | Xiaolin QIN, Xu GU, Dicheng LI, Haiwen XU. Survey and prospect of large language models [J]. Journal of Computer Applications, 2025, 45(3): 685-696. |
[6] | Chengzhe YUAN, Guohua CHEN, Dingding LI, Yuan ZHU, Ronghua LIN, Hao ZHONG, Yong TANG. ScholatGPT: a large language model for academic social networks and its intelligent applications [J]. Journal of Computer Applications, 2025, 45(3): 755-764. |
[7] | Yuemei XU, Yuqi YE, Xueyi HE. Bias challenges of large language models: identification, evaluation, and mitigation [J]. Journal of Computer Applications, 2025, 45(3): 697-708. |
[8] | Meng WANG, Daqian ZHANG, Bingyan ZHOU, Qianying MA, Jidong LYU. Fault diagnosis method for train control on-board interface equipment of CTCS-3 based on temporal knowledge graph completion [J]. Journal of Computer Applications, 2025, 45(2): 677-684. |
[9] | Bin LI, Min LIN, Siriguleng, Yingjie GAO, Yurong WANG, Shujun ZHANG. Joint entity-relation extraction method for ancient Chinese books based on prompt learning and global pointer network [J]. Journal of Computer Applications, 2025, 45(1): 75-81. |
[10] | Zidong CHENG, Peng LI, Feng ZHU. Potential relation mining in internet of things threat intelligence knowledge graph [J]. Journal of Computer Applications, 2025, 45(1): 24-31. |
[11] | Rui LI, Guanfeng LI, Dezhou HU, Wenxin GAO. Knowledge graph multi-hop reasoning model fusing path and subgraph features [J]. Journal of Computer Applications, 2025, 45(1): 32-39. |
[12] | Xueqiang LYU, Tao WANG, Xindong YOU, Ge XU. HTLR: named entity recognition framework with hierarchical fusion of multi-knowledge [J]. Journal of Computer Applications, 2025, 45(1): 40-47. |
[13] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[14] | Jie WU, Ansi ZHANG, Maodong WU, Yizong ZHANG, Congbao WANG. Overview of research and application of knowledge graph in equipment fault diagnosis [J]. Journal of Computer Applications, 2024, 44(9): 2651-2659. |
[15] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||