计算机应用 ›› 2015, Vol. 35 ›› Issue (3): 868-871.DOI: 10.11772/j.issn.1001-9081.2015.03.868

• 虚拟现实与数字媒体 • 上一篇    下一篇

基于子带谱熵的仿生小波语音增强

刘艳, 倪万顺   

  1. 大连大学 信息工程学院, 辽宁 大连 116622
  • 收稿日期:2014-10-17 修回日期:2014-11-25 出版日期:2015-03-10 发布日期:2015-03-13
  • 通讯作者: 刘艳
  • 作者简介:刘艳(1967-),女,辽宁大连人,副教授,博士,主要研究方向:电力传动系统建模、故障诊断与容错控制;倪万顺(1989-),男,江苏泰州人,硕士研究生,主要研究方向:模式识别、语音信号处理
  • 基金资助:

    辽宁省教育厅科学计划项目(L2013463)

Speech enhancement based on bionic wavelet transform of subband spectrum entropy

LIU Yan, NI Wanshun   

  1. College of Information Engineering, Dalian University, Dalian Liaoning 116622, China
  • Received:2014-10-17 Revised:2014-11-25 Online:2015-03-10 Published:2015-03-13

摘要:

前端噪声处理直接关系着语音识别的准确性和稳定性,针对小波去噪算法所分离出的信号不是原始信号的最佳估计,提出一种基于子带谱熵的仿生小波变换(BWT)去噪算法。充分利用子带谱熵端点检测的精确性,区分含噪语音部分和噪声部分,实时更新仿生小波变换中的阈值,精确地区分出噪声信号小波系数,达到语音增强目的。实验结果表明,提出的基于子带谱熵的仿生小波语音增强方法与维纳滤波方法相比,信噪比(SNR)平均提高约8%,所提方法对噪声环境下语音信号有显著的增强效果。

关键词: 语音增强, 子带谱熵, 仿生小波变换, 去噪, 阈值

Abstract:

Front end noise processing has a direct impact upon the accuracy and stability of the speech recognition. According to the fact that the signal separated by wavelet denoising algorithm isn't its optimal estimation, a novel Bionic Wavelet Transform (BWT) de-noising algorithm based on subband spectrum entropy was proposed. To achieve the purpose of speech enhancement, the subband spectrum entropy, which has a good accuracy of the endpoint detection, was taken full advantage to distinguish the parts of speech and noise, to real-timely update the threshold of BWT, and to precisely determine the noise signal wavelet coefficients. The experimental results indicate that the Signal-to-Noise Ratio (SNR) of the proposed algorithm is 8% higher than the Wiener filter algorithm. The proposed method has significant enhancement effect on speech signal in noisy environments.

Key words: speech enhancement, subband spectrum entropy, Bionic Wavelet Transform (BWT), denoising, threshold

中图分类号: