[1] EFRAT N, GLASNER D, APARTSIN A, et al. Accurate blur models vs. image priors in single image super resolution[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2013:2832-2839. [2] 张宁,王永成,张欣,等.基于深度学习的单张图片超分辨率重构研究进展[J/OL].自动化学报[2019-07-07].http://kns.cnki.net/kcms/detail/detail.aspx?doi=10.16383/j.aas.c190031. (ZHANG N, WANG Y C, ZHANG X, et al. A review of single image super-resolution based on deep learning[J/OL]. Acta Automatica Sinica[2019-07-07]. http://kns.cnki.net/kcms/detail/detail.aspx?doi=10.16383/j.aas.c190031.) [3] DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the 2014 European Conference on Computer Vision, LNCS 8692. Cham:Springer, 2014:184-199. [4] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:1646-1654. [5] MAO X, SHEN C, YANG Y. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[C]//Proceedings of the 2016 Annual Conference on Neural Information Processing Systems. La Jolla:Neural Information Processing Systems Foundation, 2016:432-449. [6] LAI W, HUANG J, AHUJA A, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:5835-5843. [7] TAI Y, YANG J, LIU Y. Image super-resolution via deep recursive residual network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:2790-2798. [8] TONG T, LI G, LIU X, et al. Image super-resolution using dense skip connections[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:4809-4817. [9] COURBARIAUX M, BENGIO Y, DAVID J P. BinaryConnect:training deep neural networks with binary weights during propagations[C]//Proceedings of the 2015 Annual Conference on Neural Information Processing Systems. La Jolla:Neural Information Processing Systems Foundation, 2015:3123-3131. [10] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [11] 袁昆鹏,席志红.基于深度跳跃级联的图像超分辨率重建[J].光学学报,2019,39(7):0715003-1-0715003-10.(YUAN K P, XI Z H. Image super resolution based on depth jumping cascade[J]. Acta Optica Sinica, 2019, 39(7):0715003-1-0715003-10.) [12] OODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 2014 Annual Conference on Neural Information Processing Systems. La Jolla:Neural Information Processing Systems Foundation, 2014:2672-2680. [13] OHNSON J, ALAHI A, LI F. Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham:Springer, 2016:694-711. [14] RASTEGARI M, ORDONEZ V, REDMON J, et al. XNOR-Net:ImageNet classification using binary convolutional neural networks[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9908. Cham:Springer, 2016:525-542. [15] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:1132-1140. [16] IOFFE S, SZEGEDY S. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 201532nd International Conference on Machine Learning. New York:JMLR, 2015:448-456. [17] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-03-20]. https://arxiv.org/pdf/1409.1556.pdf. [18] LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:105-114. [19] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612. [20] 刘杰平,杨业长,韦岗.结合暗通道先验的单幅图像快速去雾算法[J].华南理工大学学报(自然科学版),2018,46(3):86-91.(LIU J P, YANG Y Z, WEI G. A fast single image dehazing algorithm based on dark channel prior[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(3):86-91.) [21] LIN T Y, GOYAL P, GIRSHICK R. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:2999-3007 |