[1] 赵继印,郑蕊蕊,吴宝春,等. 脱机手写体汉字识别综述[J]. 电子学报, 2010, 38(2):405-415. (ZHAO J Y, ZHENG R R, WU B C, et al. A review of off-line handwritten Chinese character recognition[J]. Acta Electronica Sinica, 2010, 38(2):405-415.) [2] ZHOU M, ZHANG X, YIN F, et al. Discriminative quadratic feature learning for handwritten Chinese character recognition[J]. Pattern Recognition, 2016, 49:7-18. [3] 毛晓波,程志远,周晓东. 基于特征图叠加的脱机手写体汉字识别[J].郑州大学学报(理学版), 2018, 50(3):78-82. (MAO X B, CHENG Z Y, ZHOU X D. Offline handwritten Chinese character recognition based on feature map superposition[J]. Journal of Zhengzhou University (Natural Science Edition), 2018, 50(3):78-82.) [4] XIAO X, JIN L, YANG Y, et al. Building fast and compact convolutional neural networks for offline handwritten Chinese character recognition[J]. Pattern Recognition, 2017, 72:72-81. [5] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [6] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook:Curran Associates, Inc, 2012:1097-1105. [7] CIREŞAN D, MEIER U. Multi-column deep neural networks for offline handwritten Chinese character classification[C]//Proceedings of the 2015 International Joint Conference on Neural Networks. Piscataway:IEEE, 2015:1-6. [8] 柴伟佳,王连明. 卷积神经网络的多字体汉字识别[J]. 中国图象图形学报, 2018, 23(3):410-417. (CHAI W J, WANG L M. Recognition of Chinese characters using deep convolutional neural network[J]. Journal of Image and Graphics, 2008, 23(3):410-417.) [9] ZHONG Z, JIN L, XIE Z. High performance offline handwritten Chinese character recognition using GoogLeNet and directional feature maps[C]//Proceedings of the 13th International Conference on Document Analysis and Recognition. Piscataway:IEEE, 2015:846-850. [10] ZHANG X, BENGIO Y, LIU C. Online and offline handwritten Chinese character recognition:a comprehensive study and new benchmark[J]. Pattern Recognition, 2017, 61:348-360. [11] LI Z, TENG N, JIN M, et al. Building efficient CNN architecture for offline handwritten Chinese character recognition[J]. International Journal on Document Analysis and Recognition, 2018, 21(4):233-240. [12] 赵秀红. 基于主成分分析的特征提取的研究[D]. 西安:西安电子科技大学, 2016:23-25. (ZHAO X H. Research on feature extraction based on principal component analysis[D]. Xi'an:Xidian University, 2016:23-25.) [13] HE Z, ZHONG Y, CAO Y. High accuracy handwritten Chinese character recognition based on support vector machine and independent component analysis[M]//DU W. Informatics and Management Science V, LNEE 208. London:Springer, 2013:725-733. [14] 徐久成,黄方舟,穆辉宇,等. 基于PCA和信息增益的肿瘤特征基因选择方法[J]. 河南师范大学学报(自然科学版), 2018, 46(2):104-112. (XU J C, HUANG F Z, MU H Y, et al. Tumor feature gene selection method based on PCA and information gain[J]. Journal of Henan Normal University (Natural Science Edition), 2018, 46(2):104-112.) [15] 张成,李娜,李元,等. 核参数判别选择方法在核主元分析中的应用[J]. 计算机应用, 2014, 34(10):2895-2898. (ZHANG C, LI N, LI Y, et al. Application of kernel parameter discriminant method in kernel principal component analysis[J]. Journal of Computer Applications, 2014, 34(10):2895-2898.) [16] 陈伏兵,陈秀宏,张生亮,等. 基于模块2DPCA的人脸识别方法[J]. 中国图象图形学报, 2006, 11(4):580-585. (CHEN F B, CHEN X H, ZHANG S L, et al. A human face recognition method based on modular 2DPCA[J]. Journal of Image and Graphics, 2006, 11(4):580-585.) [17] YANG J, ZHANG D, FRANGI A F, et al. Two-dimensional PCA:a new approach to appearance-based face representation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1):131-137. [18] LIU K, CHENG Y, YANG J. Algebraic feature extraction for image recognition based on an optimal discriminant criterion[J]. Pattern Recognition, 1993, 26(6):903-911. [19] YANG J, YANG J. From image vector to matrix:a straightforward image projection technique-IMPCA vs. PCA[J]. Pattern Recognition, 2002, 35(9):1997-1999. [20] 孙瑞霞,汪亚明,黄文清. 基于GA的2DPCA在人脸识别中的应用[J].计算机工程与设计, 2007, 28(10):2398-2400. (SUN R X, WANG Y M, HUANG W Q. Application of 2DPCA in face recognition based on GA[J]. Computer Engineering and Design, 2007, 28(10):2398-2400.) [21] 陈伏兵,陈秀宏,高秀梅,等. 二维主成分分析方法的推广及其在人脸识别中的应用[J]. 计算机应用, 2005, 25(8):1767-1770. (CHEN F B, CHEN X H, GAO X M, et al. Generalization of 2DPCA and its application in face recognition[J]. Journal of Computer Applications, 2005, 25(8):1767-1770.) [22] 胡娜,马慧,湛涛. 融合LBP纹理特征与B2DPCA技术的手指静脉识别方法[J]. 智能系统学报, 2019, 14(3):533-540. (HU N, MA H, ZHAN T. Finger vein recognition method combining LBP texture feature and B2DPCA technology[J]. CAAI Transactions on Intelligent Systems, 2019, 14(3):533-540.) [23] 闫荣华,彭进业,汶德胜. PCA与2DPCA的关系[J]. 计算机科学, 2017, 44(11A):202-206, 216. (YAN R H, PENG J Y, WEN D S. Relationship between PCA and 2DPCA[J]. Computer Science, 2017, 44(11A):202-206, 216.) [24] GAO X, WEN W, JIN L. A new feature optimization method based on two-directional 2DLDA for handwritten Chinese character recognition[C]//Proceedings of the 2011 International Conference on Document Analysis and Recognition. Piscataway:IEEE, 2011:232-236. |