[1] SMOBOLESTAN S M,RASOOLI A,KHODAYGAN S. Optimal path-planning for mobile robots to find a hidden target in an unknown environment based on machine learning[J]. Journal of Ambient Intelligence and Humanized Computing,2019,10(5):1841-1850. [2] 陈余庆, 李桐训, 于双和, 等. 基于势场蚁群算法的机器人全局路径规划[J]. 大连理工大学学报, 2019, 59(3):316-322.(CHEN Y Q,LI T X,YU S H,et al. Global path planning of robots based on potential field ant colony algorithm[J]. Journal of Dalian University of Technology,2019,59(3):316-322.) [3] 张强, 陈兵奎, 刘小雍, 等. 基于改进势场蚁群算法的移动机器人最优路径规划[J]. 农业机械学报, 2019, 50(5):23-32, 42. (ZHANG Q,CHEN B K,LIU X Y,et al. Ant colony optimization with improved potential field heuristic for robot path planning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(5):23-32,42.) [4] 童兴, 原帅琪, 方伟鹏, 等. 基于Dijkstra算法的矿井最佳避灾路线分类求取[J]. 工矿自动化, 2018, 44(4):94-99.(TONG X, YUAN S Q,FANG W P,et al. Classification of the best escape route of coal mine based on Dijkstra algorithm[J]. Industrial and Mine Automation,2018,44(4):94-99.) [5] 吴红波, 王英杰, 杨肖肖. 基于Dijkstra算法优化的城市交通路径分析[J]. 北京交通大学学报, 2019, 43(4):116-121, 130.(WU H B,WANG Y J,YANG X X. Analysis of urban traffic vehicle routing based on Dijkstra algorithm optimization[J]. Journal of Beijing Jiaotong University,2019,43(4):116-121,130.) [6] 武雅杰, 杨晶东. 基于A*算法的机器人路径规划[J]. 电子科技, 2017, 30(6):124-127.(WU Y J,YANG J D. Mobile robot path planning based on A* algorithm[J]. Electronic Science and Technology,2017,30(6):124-127.) [7] 王维, 裴东, 冯璋. 改进A*算法的移动机器人最短路径规划[J]. 计算机应用, 2018, 38(5):1523-1526.(WANG W,PEI D,FENG Z. The shortest path planning for mobile robots using improved A* algorithm[J]. Journal of Computer Applications,2018,38(5):1523-1526.) [8] MO H, XU L. Research of biogeography particle swarm optimization for robot path planning[J]. Neurocomputing,2015, 148:91-99. [9] 王功亮, 王好臣, 李振雨, 等. 基于优化遗传算法的移动机器人路径规划[J]. 机床与液压, 2019, 47(3):37-40, 100.(WANG G L, WANG H C,LI Z Y,et al. Path planning for mobile robots based on optimized genetic algorithm[J]. Machine Tool and Hydraulics, 2019,47(3):37-40,100.) [10] 刘二辉, 姚锡凡, 蓝宏宇, 等. 基于改进遗传算法的自动导引小车动态路径规划及其实现[J]. 计算机集成制造系统, 2018, 24(6):1455-1467.(LIU E H,YAO X F,LAN H Y,et al. AGV dynamic path planning based on improved genetic algorithm and its implementation[J]. Computer Integrated Manufacturing System, 2018,24(6):1455-1467.) [11] 罗强, 王海宝, 崔小劲, 等. 改进人工势场法自主移动机器人路径规划[J]. 控制工程, 2019, 26(6):1091-1098.(LUO Q, WANG H B,CUI X J,et al. Autonomous mobile robot path planning based on improved artificial potential method[J]. Control Engineering,2019,26(6):1091-1098.) [12] 韩伟, 孙凯彪. 基于模糊人工势场法的智能全向车路径规划[J]. 计算机工程与应用, 2018, 54(6):105-109, 167.(HAN W, SUN K B. Research on dynamic path planning of fuzzy artificial potential field method[J]. Computer Engineering and Applications,2018,54(6):105-109,167.) [13] HU Y,KE W,CHANG L,et al. Research on multi-objective path planning of a robot based on artificial potential field method[J]. International Journal of Wireless and Mobile Computing,2018,15(4):335-341. [14] KUMAR P B, RAWAT H, PARHI D R. Path planning of humanoids based on artificial potential field method in unknown environments[J]. Expert Systems,2018,36(2):Article No. e12360. [15] YANG X,YANG W,ZHANG H,et al. A new method for robot path planning based artificial potential field[C]//Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications. Piscataway:IEEE,2016:1294-1299. [16] HUANG Y,HU H,LIU X. Obstacles avoidance of artificial potential field method with memory function incomplex environment[C]//Proceedings of the 20108th World Congress on Intelligent Control and Automation. Piscataway:IEEE,2010:6414-6418. [17] 陈倩, 张奇松, 侯丽. LBS中改进人工势场法的动态目标路径规划研究[J]. 电子设计工程, 2018, 26(5):76-80.(CHEN Q, ZHANG Q S,HOU L. Improved artificial potential field method for dynamic target path planning in LBS[J]. Electronic Design Engineering,2018,26(5):76-80.) [18] 万方, 周风余, 尹磊, 等. 基于电势场法的移动机器人全局路径规划算法[J]. 机器人, 2019, 41(6):742-750.(WAN F,ZHOU F Y,YIN L,et al. Global path planning algorithm of mobile robot based on electric potential field[J]. Robot,2019,41(6):742-750.) [19] 梁献霞, 刘朝英, 宋雪玲, 等. 改进人工势场法的移动机器人路径规划研究[J]. 计算机仿真, 2018, 35(4):291-294, 361. (LIANG X X,LIU C Y,SONG X L,et al. Research on improved artificial potential field approach in local path planning for mobile robot[J]. Computer Simulation,2018,35(4):291-294,361.) [20] 程志, 张志安, 李金芝, 等. 改进人工势场法的移动机器人路径规划[J]. 计算机工程与应用, 2019, 55(23):29-34.(CHENG Z, ZHANG Z A,LI J Z,et al. Mobile robots path planning based on improved artificial potential field[J]. Computer Engineering and Applications,2019,55(23):29-34.) |