1 |
COHEN I, MEDIONI G. Detecting and tracking moving objects for video surveillance[C]// Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition — Volume 2. Piscataway: IEEE, 1999, 2: 319-325.
|
2 |
胡学敏,童秀迟,郭琳,等.基于深度视觉注意神经网络的端到端自动驾驶模型[J].计算机应用, 2020,40(7):1926-1931.
|
|
HU X M, TONG X C, GUO L, et al. End-to-end autonomous driving model based on deep visual attention neural network[J]. Journal of Computer Applications, 2020, 40(7): 1926-1931.
|
3 |
CHAKRABORTY B, SARMA D, BHUYAN M K, et al. Review of constraints on vision‐based gesture recognition for human-computer interaction[J]. IET Computer Vision, 2018, 12(1): 3-15.
|
4 |
HU L, ZHANG P, ZHANG B, et al. Learning position and target consistency for memory-based video object segmentation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4142-4152.
|
5 |
LIANG Y, LI X, JAFARI N, et al. Video object segmentation with adaptive feature bank and uncertain-region refinement[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 3430-3441.
|
6 |
HU Y T, HUANG J B, SCHWING A G. VideoMatch: matching based video object segmentation[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11212. Cham: Springer, 2018: 56-73.
|
7 |
YANG Z, WEI Y, YANG Y. Collaborative video object segmentation by foreground-background integration[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12350. Cham: Springer, 2020: 332-348.
|
8 |
PORTALÉS C, GIMENO J, SALVADOR A, et al. Mixed reality annotation of robotic-assisted surgery videos with real-time tracking and stereo matching[J]. Computers and Graphics, 2023, 110: 125-140.
|
9 |
CHENG H K, TAI Y-W, TANG C-K. Rethinking space-time networks with improved memory coverage for efficient video object segmentation[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 11781-11794.
|
10 |
OH S W, LEE J Y, XU N, et al. Video object segmentation using space-time memory networks[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9225-9234.
|
11 |
WU Q, YANG T, WU W, et al. Scalable video object segmentation with simplified framework[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 13833-13843.
|
12 |
YANG Z, WEI Y, YANG Y. Associating objects with transformers for video object segmentation[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 2491-2502.
|
13 |
YIN M, YAO Z, CAO Y, et al. Disentangled non-local neural networks[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12360. Cham: Springer, 2020: 191-207.
|
14 |
CHENG H K, Y-W TAIO, TANG C-K. Modular interactive video object segmentation: interaction-to-mask, propagation and difference-aware fusion[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 5555-5564.
|
15 |
PONT-TUSET J, PERAZZI F, CAELLES S, et al. The 2017 DAVIS challenge on video object segmentation[EB/OL]. [2024-01-11]. .
|
16 |
XU N, YANG L, FAN Y, et al. YouTube-VOS: a large-scale video object segmentation benchmark[EB/OL]. [2024-01-15]. .
|
17 |
K-K MAMINIS, CCELLES S, CHEN Y H, et al. Video object segmentation without temporal information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(6): 1515-1530.
|
18 |
VENTURA C, BELLVER M, GIRBAU A, et al. RVOS: end-to-end recurrent network for video object segmentation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5272-5281.
|
19 |
LIN H, QI X, JIA J. AGSS-VOS: attention guided single-shot video object segmentation[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3948-3956.
|
20 |
CAELLES S, K-K MANINIS, PONT-TUSET J, et al. One-shot video object segmentation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5320-5329.
|
21 |
ZHANG Y, WU Z, PENG H, et al. A transductive approach for video object segmentation[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6947-6956.
|
22 |
KUMA A, IRSOY O, ONDRUSKA P, et al. Ask me anything: dynamic memory networks for natural language processing[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: ACM, 2016: 1378-1387.
|
23 |
BHAT G, LAWIN F J, DANELLJAN M, et al. Learning what to learn for video object segmentation[C]// Proceedings of the 16th European Conference on Computer Vision, LNCS 12347. Cham: Springer, 2020: 777-794.
|
24 |
SEONG H, HYUN J, KIM E. Kernelized memory network for video object segmentation[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12367. Cham: Springer, 2020: 629-645.
|
25 |
SEONG H, OH S W, LEE J-Y, et al. Hierarchical memory matching network for video object segmentation[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 12869-12878.
|
26 |
LIANG S, SHEN X, HUANG J, et al. Video object segmentation with dynamic memory networks and adaptive object alignment[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8045-8054.
|
27 |
HOU W, QIN Z, XI X, et al. Learning disentangled representation for self-supervised video object segmentation[J]. Neurocomputing, 2022, 481: 270-280.
|
28 |
VASWANI A, SHAZEER N, PARAMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
29 |
YANG Y, WEI H, SUN Z, et al. S2OSC: a holistic semi-supervised approach for open set classification[J]. ACM Transactions on Knowledge Discovery from Data, 2022, 16(2): No.34.
|
30 |
DUKE B, AHMED A, WOLF C, et al. SSTVOS: sparse spatiotemporal Transformers for video object segmentation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 5908-5917.
|
31 |
MAO Y, WANG N, ZHOU W, et al. Joint inductive and transductive learning for video object segmentation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9650-9659.
|
32 |
LIN T-Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
|
33 |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
|