《计算机应用》唯一官方网站

• •    下一篇

融合时序行为链与事件类型的类案检索方法

詹力林1,秦永彬2,黄瑞章2,王华2,陈艳平1   

  1. 1. 贵州大学计算机科学与技术学院
    2. 贵州大学
  • 收稿日期:2024-07-01 修回日期:2024-07-25 发布日期:2024-08-22 出版日期:2024-08-22
  • 通讯作者: 秦永彬
  • 基金资助:
    面向裁判文书的行为要素挖掘与分析关键技术研究;基于可信大模型的知识问答应用示范

Legal case retrieval method integrating temporal behavior chain and event type

  • Received:2024-07-01 Revised:2024-07-25 Online:2024-08-22 Published:2024-08-22

摘要: 摘 要: 针对现有的类案检索方法缺乏对案情要素的有效利用容易被案例内容语义结构相似性所误导的问题,提出了融合时序行为链与事件类型的类案检索方法。首先,采取序列标注的方法识别出案情描述中的法律事件类型,并利用案例文本中的行为要素构建时序行为链,突出案情的关键要素,使模型聚焦于案例的核心内容,以解决现有方法易被案例的语义结构相似性所误导的问题。其次,利用分段编码构造时序行为链的相似性向量表征矩阵,增强案例间行为要素的语义交互。最后,经过聚合评分器,从时序行为链、法律事件类型、犯罪类型三个角度衡量案例的相关性,增加案例匹配得分的合理性。实验结果表明,与SAILER(Structure-Aware pre-traIned language model for LEgal case Retrieval)方法相比,该方法在LeCaRD(Legal Case Retrieval Dataset)数据集中,P@5值提升了4个百分点、P@10值提升了3个百分点、MAP值提升了4个百分点、NDCG@30值提升了0.8个百分点。该方法有效利用案情要素,避免了案例内容语义结构相似性的干扰,能为类案检索提供可靠的依据。

关键词: 关键词:案情要素, 行为要素, 事件类型, 时序行为链, 聚合评分器

Abstract: Abstract: Aiming at the problem that existing legal case retrieval methods lack effective utilization of case elements and were easily misled by the similarity of the semantic structure of case content, a legal case retrieval method integrating temporal behavior chain and event type was proposed. Firstly, the sequence labeling method was adopted to identify the legal event type in case description, and the temporal behavior chain was constructed by using the behavioral elements in the case text, highlighting the key elements of the case, so that the model focused on the core content of the case, so as to solve the problem that the existing methods were easily misled by the similarity of the semantic structure of the case. Secondly, the similarity vector representation matrix of the temporal behavior chain was constructed by segmented coding to enhance the semantic interaction of behavioral elements between cases. Finally, the relevance of the case was measured from three perspectives of temporal behavior chain, legal event type, and crime type through the aggregation scorer, so as to increase the rationality of the case matching score. The experimental results show that compared with the SAILER(Structure-Aware pre-traIned language model for LEgal case Retrieval) method, the P@5 score of this method is improved by 4 percentage points, the P@10 score is improved by 3 percentage points, the MAP score is improved by 4 percentage points, and the NDCG@30 score is improved by 0.8 percentage points in the LeCaRD (Legal Case Retrieval Dataset) dataset. This method effectively utilizes case elements, avoids interference from the similarity of the semantic structure of case content, and can provide a reliable basis for legal case retrieval.

Key words: Keywords: case elements, behavioral elements, event type, temporal behavioral chain, aggregation scorer

中图分类号: