《计算机应用》唯一官方网站

• •    下一篇

基于局部-全局交互与结构Transformer的点云分类算法

陈凯,叶海良,曹飞龙   

  1. 中国计量大学 理学院,浙江 杭州 310018
  • 收稿日期:2024-05-09 修回日期:2024-06-24 接受日期:2024-06-26 发布日期:2024-07-25 出版日期:2024-07-25
  • 通讯作者: 曹飞龙
  • 作者简介:陈凯(1998—),男,浙江杭州人,硕士研究生,主要研究方向:深度学习、计算机视觉;叶海良(1990—),男,浙 江绍兴人,讲师,博士,主要研究方向:深度学习、图神经网络;曹飞龙(1965—),男,浙江台州人,教授,博士,主要研究 方向:深度学习、图像处理等。
  • 基金资助:
    国家自然科学基金项目(62032022); 国家自然科学基金项目(62176244)

Classification algorithm for point cloud based on local-global interaction and structural Transformer

CHEN KaiYE HailiangCAO Feilong #br#   

  • Received:2024-05-09 Revised:2024-06-24 Accepted:2024-06-26 Online:2024-07-25 Published:2024-07-25
  • About author:CHEN Kai, born in 1998, M. S. candidate. His research interests include deep learning and computer vision. YE Hailiang,born in 1990,Ph. D,Lecturer,Master Tutor. His research interests include deep learning and image processing. CAO Feilong,born in 1965,Ph. D,Professor,Doctor Tutor. His research interests include deep learning and image processing.
  • Supported by:
    This work is partially supported by the the National Natural Science Foundation of China (62032022), National Natural Science Foundation of China (62176244).

摘要: 针对点云分类特征提取过程中局部与全局特征提取不充分的问题,提出一种局部-全局交互与结构Transformer的点云分类算法。首先,提出双支并行的局部-全局交互框架并分别提取局部特征和全局特征,其中一支组合最大池化与卷积以提取局部特征,另一支用平均池化与Transformer提取全局特征。同时,考虑Transformer中位置信息的重要性,提出结构Transformer,多次应用位置信息与当前特征的交互,进一步增强全局结构特征。最后,利用局部-全局特征进行分类,完成点云的分类任务。在ModelNet40和ScanObjectNN基准数据集中分别获得93.6%和87.5%的分类精度。实验结果表明,所提出的局部-全局交互与结构Transformer网络在点云分类任务中取得良好的性能。

关键词: 深度学习, 点云分类, 局部-全局交互, 结构Transformer

Abstract: Aiming at the problem of insufficient local and global feature extraction in the feature extraction process of point cloud classification, a point cloud classification algorithm with local-global interaction and structural Transformer is proposed. Firstly, a dual-branch parallel local-global interaction framework is proposed and extracts local and global features respectively, where one branch combines maximum pooling and convolution to extract local features, and the other branch extracts global features with average pooling and Transformer. Meanwhile, considering the importance of position information in Transformer, structural Transformer is proposed to further enhance global structural features by applying the interaction of position information with current features several times. Finally, the local-global features are used for classification to complete the classification task of the point cloud. Classification accuracies of 93.6% and 87.5% are obtained in ModelNet40 and ScanObjectNN benchmark datasets, respectively. The experimental results show that the proposed local-global interaction with structural Transformer network achieves good performance in the point cloud classification task.

Key words: deep learning, point cloud classification, local-global interaction, structural Transformer

中图分类号: