《计算机应用》唯一官方网站

• •    下一篇

基于本地漂移和多样性算力的联邦学习优化算法

张一鸣,曹腾飞   

  1. (1.青海大学 计算机技术与应用学院,青海 西宁 810016)
    (2.
    青海省智能计算与应用实验室,青海 西宁 810016)
  • 收稿日期:2024-07-05 修回日期:2024-08-20 接受日期:2024-08-26 发布日期:2024-08-29 出版日期:2024-08-29
  • 通讯作者: 曹腾飞
  • 作者简介:张一鸣(1999—),男,江苏无锡人,硕士研究生,主要研究方向:联邦学习、隐私保护;曹腾飞(1987—),男,青 海西宁人,副教授,博士生导师,博士,CCF 高级会员,主要研究方向:智能网络优化、网络攻防。
  • 基金资助:
    移动网络中QoE驱动的缓存隐私保护与资源联合调度技术研究

Federated Learning Optimization Algorithm based on Local Drift and Diversity Computing Power

ZHANG Yiming, CAO Tengfei #br#   

  1. (1. Department of Computer Technology and Applications, Qinghai University, Xining Qinghai 810016, China)
    (2. Qinghai Intelligent Computing and Application Laboratory, Xining Qinghai 810016, China)

  • Received:2024-07-05 Revised:2024-08-20 Accepted:2024-08-26 Online:2024-08-29 Published:2024-08-29
  • About author:ZHANG Yiming, born in 1999, M. S. candidate. His research interests include federated learning and privacy protection. CAO Tengfei, born in 1987, Ph. D., professor. His research interests include intelligent network optimization and network attack and defense.
  • Supported by:
    This work is partially supported by the National Natural Science Foundation
    of China Youth Fund(62101299)
    Qinghai Province Applied Basic Research
    Project(2024-ZJ-708)

摘要: 针对联邦学习在边缘计算应用中所面临的非独立同分布数据和异构算力挑战,为了避免数据非独立同分布导致客
户端模型更新方向出现较大偏差,从而引发模型不稳定的收敛,引入局部漂移变量的概念;并通过校正本地模型参数,将本
地训练过程与全局聚合过程分离,优化联邦学习在非独立同分布数据训练过程中的性能。此外,鉴于边缘服务器算力的多样
性,提出一种新的策略:从全局模型中划分出一个简化的神经网络子模型下发给算力受限的边缘服务器进行训练,而高算力
的边缘服务器则使用整个全局模型进行训练;低算力边缘服务器训练所得的参数将上传至云服务器,通过冻结部分参数加速
整个模型的拟合速度。结合以上两种方法,提出了一种基于本地漂移和多样性算力的联邦学习优化算法
(FedLD),旨在解决
联邦学习在边缘计算应用中所面临的数据非独立同分布和算力多样性带来的异构挑战。实验结果表明,所提出的
FedLD 算法
FedAvgScaffold FedProx 算法收敛更高、准确率更高,在 MNISTCIFAR-10 CIFAR-100 数据集上分别将模型精度
提升了
0.25%1.5%5%,与最新 FedProc 算法的对比中发现,FedLD 算法通信开销更低,并且在 K 最近邻算法(KNN)、长
短期记忆
(LSTM)网络模型和双向门控循环单元(GRU)网络模型上的对比实验结果表明,结合 FedLD 算法后,3 种模型的预测
精度均有约
1%的提升。

关键词: 关键词: 联邦学习, 边缘计算, 异构性, 客户端漂移, 算力多样性

Abstract: In view of the challenges of non independent and identically distributed data and heterogeneous computing power faced by federated learning in edge computing applications, the concept of local drift variable is introduced to avoid the large deviation in the update direction of the client model caused by non independent and identically distributed data, which will lead to unstable convergence of the model; By adjusting the local model parameters, the local training process is separated from the global aggregation process, and the performance of Federated learning in the training process of non independent and identically distributed data is optimized. In addition, in view of the diversity of edge servers' computing power, a new strategy is proposed: a simplified neural network sub model is divided from the global model and sent to the edge servers with limited computing power for training, while the edge servers with high computing power use the whole global model for training; The parameters trained by the low computing edge server will be uploaded to the cloud server, and the fitting speed of the whole model will be accelerated by freezing some parameters. Combined with the above two methods, a federated learning optimization algorithm (FedLD) based on local drift and diversity of computing power is proposed, which aims to solve the heterogeneous challenges caused by non independent and identically distributed data and diversity of computing power in the application of Federated learning in edge computing. Experimental results show that the proposed FedLD algorithm has faster convergence speed and higher accuracy than FedAvg、Scaffold and FedProx algorithms, and improves the model accuracy by 0.25%, 1.5% and 5% on MNIST, CIFAR-10 and CIFAR-100 datasets, respectively. Compared with the latest FedProcalgorithm, we can find that the FedLD algorithm has lower communication overhead, and the comparison experiment is carried out in the K-Nearest Neighbor algorithm (KNN), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) network model. The comparison experiment shows that the prediction accuracy of the three models is improved by about 1% after the combination of FedLD algorithm. Keywords: federated learning; edge computing; heterogeneity; client drift; computing power diversity

Key words: Keywords: federated learning, edge computing, heterogeneity, client drift, computing power diversity

中图分类号: