| 1 | JIANG S, ALVES A, RODRIGUES F, et al. Mining point of interest data from social networks for urban land use classification and disaggregation[J]. Computers, Environment and Urban Systems, 2015, 53:36-46.  10.1016/j.compenvurbsys.2014.12.001 | 
																													
																						| 2 | 宋正娜,陈雯,张桂香,等. 公共服务设施空间可达性及其度量方法[J]. 地理科学进展, 2010, 29(10):1217-1224.  10.11820/dlkxjz.2010.10.009 | 
																													
																						|  | SONG Z N, CHEN W, ZHANG G X, et al. Spatial accessibility of public service facilities and its measurement approaches[J]. Progress in Geography, 2010, 29(10):1217-1224.  10.11820/dlkxjz.2010.10.009 | 
																													
																						| 3 | LIU X J, LONG Y. Automated identification and characterization of parcels with OpenStreetMap and points of interest[J]. Environment and Planning B: Planning and Design, 2015, 43(2):341-360.  10.1177/0265813515604767 | 
																													
																						| 4 | LIU K, YIN L, LU F, et al. Visualizing and exploring POI configurations of urban regions on POI-type semantic space[J]. Cities, 2020, 99: No.102610.  10.1016/j.cities.2020.102610 | 
																													
																						| 5 | ZHANG X Y, DU S H, ZHANG J X. How do people understand convenience-of-living in cities? a multiscale geographic investigation in Beijing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 148:87-102.  10.1016/j.isprsjprs.2018.12.016 | 
																													
																						| 6 | ZHANG C, ZHANG K Y, YUAN Q, et al. Regions, periods, activities: uncovering urban dynamics via cross-modal representation learning[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017:361-370.  10.1145/3038912.3052601 | 
																													
																						| 7 | FU Y J, LIU G N, PAPADIMITRIOU S, et al. Real estate ranking via mixed land-use latent models[C]// Proceedings of the 21st ACM SIGKD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2015:299-308.  10.1145/2783258.2783383 | 
																													
																						| 8 | WANG P Y, FU Y J, ZHANG J W, et al. Learning urban community structures: a collective embedding perspective with periodic spatial-temporal mobility graphs[J]. ACM Transactions on Intelligent Systems and Technology, 2018, 9(6): No.63.  10.1145/3209686 | 
																													
																						| 9 | 庄晓平,陶楠,王江萍. 基于POI数据的城市15分钟社区生活圈便利度评价研究-以武汉三区为例[J]. 华中建筑, 2020, 38(6):76-79. | 
																													
																						|  | ZHUANG X P, TAO N, WANG J P. The evaluation of the convenience of 15-minute community life circles based on POI data: taking three districts of Wuhan as an example[J]. Huazhong Architecture, 2020, 38(6):76-79. | 
																													
																						| 10 | LI Z H, DING B L, HAN J W, et al. Mining periodic behaviors for moving objects[C]// Proceedings of the 16th ACM SIGKD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010:1099-1108.  10.1145/1835804.1835942 | 
																													
																						| 11 | BURGES C, SHAKED T, RENSHAW E, et al. Learning to rank using gradient descent[C]// Proceedings of the 22nd International Conference on Machine Learning. New York: ACM, 2005:89-96.  10.1145/1102351.1102363 | 
																													
																						| 12 | BURGES C J C. From RankNet to LambdaRank to LambdaMART: an overview: MSR-TR- 2010-82[R/OL]. (2010-06) [2021-06-20].. | 
																													
																						| 13 | ZHANG Y, CAPRA L, WOLFSON O, et al. Urban computing: concepts, methodologies, and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2014, 5(3): No.38.  10.1145/2629592 | 
																													
																						| 14 | COURVILLE A, BERGSTRA J, BENGIO Y. Unsupervised models of images by spike-and-slab RBMs[C]// Proceedings of the 28th International Conference on Machine Learning. Madison, WI: Omnipress, 2011:1145-1152. | 
																													
																						| 15 | MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. (2013-09-07) [2021-05-23]..  10.3126/jiee.v3i1.34327 | 
																													
																						| 16 | OU M D, CUI P, PEI J, et al. Asymmetric transitivity preserving graph embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016:1105-1114.  10.1145/2939672.2939751 | 
																													
																						| 17 | HINTON G E, ZEMEL R S. Autoencoders, minimum description length and Helmholtz free energy[C]// Proceedings of the 6th International Conference on Neural Information Processing Systems. San Francisco: Morgan Kaufmann Publishers Inc., 1993: 3-10. | 
																													
																						| 18 | FU Y J, WANG P Y, DU J D, et al. Efficient region embedding with multi-view spatial networks: a perspective of locality constrained spatial autocorrelations[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019:906-913.  10.1609/aaai.v33i01.3301906 | 
																													
																						| 19 | FU Y J, XIONG F, GE Y, et al. Exploiting geographic dependencies for real estate appraisal: a mutual perspective of ranking and clustering[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014:1047-1056.  10.1145/2623330.2623675 | 
																													
																						| 20 | MEI Q Z, ZHAI C X. Discovering evolutionary theme patterns from text — an exploration of temporal text mining[C]// Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2005:198-207.  10.1145/1081870.1081895 | 
																													
																						| 21 | YE X Y, TAN H L, ZHANG Y Z, et al. Research on convenience index of urban life based on POI data[J]. Journal of Physics: Conference Series, 2020, 1646: No.012073.  10.1088/1742-6596/1646/1/012073 | 
																													
																						| 22 | FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5):1189-1232.  10.1214/aos/1013203451 | 
																													
																						| 23 | FREUND Y, IYER R D, SCHAPIRE R E, et al. An efficient boosting algorithm for combining preferences[J]. Journal of Machine Learning Research, 2003, 4:933-969. | 
																													
																						| 24 | CAO Z, QIN T, LIU T Y, et al. Learning to rank: from pairwise approach to listwise approach[C]// Proceedings of the 24th International Conference on Machine Learning. New York: ACM, 2007:129-136.  10.1145/1273496.1273513 |