1 |
PANG B, LEE L, VAITHYANATHAN S. Thumbs up? sentiment classification using machine learning techniques [C]// Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2002, 10: 79-86.
|
2 |
ABBASI A, FRANCE S, ZHANG Z, et al. Selecting attributes for sentiment classification using feature relation networks [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 23(3): 447-462.
|
3 |
ZHOU Y, LI J L, CHI J, et al. Set-CNN: a text convolutional neural network based on semantic extension for short text classification [J]. Knowledge-Based Systems, 2022, 257: 109948.
|
4 |
DENG J, CHENG L, WANG Z. Attention-based BiLSTM fused CNN with gating mechanism model for Chinese long text classification [J]. Computer Speech & Language, 2021, 68: 101182.
|
5 |
AL-ADHAILEH M H, ALDHYANI T H H, ALGHAMDI A D. Online troll reviewer detection using deep learning techniques [J]. Applied Bionics and Biomechanics, 2022, 2022: 4637594.
|
6 |
邓钰,雷航,李晓瑜,等.用于目标情感分类的多跳注意力深度模型[J].电子科技大学学报, 2019, 48(5): 759-766.
|
|
DENG Y, LEI H, LI X Y, et al. A multi-hop attention deep model for aspect-level sentiment classification [J]. Journal of University of Electronic Science and Technology of China, 2019, 48(5): 759-766.
|
7 |
官永庆.基于机器学习的短文本分类在核电质量管理中的研究与应用[D].上海:上海交通大学, 2017.
|
|
GUAN Y Q. The research and application of short text classification based on machine learning in nuclear power quality management [D]. Shanghai: Shanghai Jiao Tong University, 2017.
|
8 |
徐霞军,秦绪涛,杨强,等.大数据技术在核电设备缺陷分析中的初步应用[J].核动力工程, 2020, 41(S1): 68-72.
|
|
XU X J, QIN X T, YANG Q, et al. Preliminary application of big data technology in defect analysis of nuclear power equipment [J]. Nuclear Power Engineering, 2020, 41(S1): 68-72.
|
9 |
BUDA M, MAKI A, MAZUROWSKI M. A systematic study of the class imbalance problem in convolutional neural networks [J]. Neural Networks, 2017, 106: 249-259.
|
10 |
叶枫,江永省.基于聚类融合欠采样的不平衡分类方法[J].计算机应用与软件, 2020, 37(1): 292-297.
|
|
YE F, JIANG Y S. Unbalanced classification method based on clustering ensemble and under-sampling [J]. Computer Applications and Software, 2020, 37(1): 292-297.
|
11 |
LI X, YU L, CHANG D, et al. Dual cross-entropy loss for small-sample fine-grained vehicle classification [J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4204-4212.
|
12 |
LIN T-Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the 2017 International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
|
13 |
KIM J, KIM T, KIM S, et al. Edge-labeling graph neural network for few-shot learning [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11-20.
|
14 |
ZHOU Z, SHIN J, ZHANG L, et al. Fine-tuning convolutional neural networks for biomedical image analysis: actively and incrementally [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4761-4772.
|
15 |
DEVLIN J, CHANG M-W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding [C]// Proceedings of the 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186.
|
16 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31 st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
17 |
LIU P, QIU X, HUANG X. Recurrent neural network for text classification with multi-task learning [C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York: AAAI Press, 2016: 2873-2879.
|
18 |
MNIH V, HEESS N, GRAVES A. Recurrent models of visual attention [C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2204-2212.
|
19 |
KIM Y. Convolutional neural networks for sentence classification [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746-1751.
|
20 |
JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization [C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Volume 1(Long Papers). Stroudsburg: ACL, 2017: 562-570.
|
21 |
JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification [C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Volume 2(Short Papers). Stroudsburg: ACL, 2017: 427-431.
|