| 1 | 官赛萍,靳小龙,贾岩涛,等.面向知识图谱的知识推理研究进展[J].软件学报, 2018, 29(10): 2966-2994. | 
																													
																						|  | GUAN S P, JIN X L, JIA Y T, et al. Knowledge reasoning over knowledge graph: a survey [J]. Journal of Software, 2018, 29(10): 2966-2994. | 
																													
																						| 2 | FANG Y, LU W, LIU X, et al. CircularE: a complex space circular correlation relational model for link prediction in knowledge graph embedding [J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023, 31: 3162-3175. | 
																													
																						| 3 | LI M, WANG Y, ZHANG D, et al. Link prediction in knowledge graphs: a hierarchy-constrained approach [J]. IEEE Transactions on Big Data, 2022, 8(3): 630-643. | 
																													
																						| 4 | WANG J, WANG B, GAO J, et al. TDN: triplet distributor network for knowledge graph completion [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 13002-13014. | 
																													
																						| 5 | LU X, WANG L, JIANG Z, et al. MMKRL: a robust embedding approach for multi-modal knowledge graph representation learning [J]. Applied Intelligence, 2022, 52(7): 7480-7497. | 
																													
																						| 6 | DONG Y, CHAWLA N V, SWAMI A. metapath2vec: scalable representation learning for heterogeneous networks [C]// Proceedings of the 23rd ACM SIGKDD International Conference on knowledge Discovery and Data Mining. New York: ACM, 2017: 135-144. | 
																													
																						| 7 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2023-09-20]. . | 
																													
																						| 8 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. [2023-10-20]. . | 
																													
																						| 9 | HAMILTON W L, YING Z, LESKOVEC J. Inductive representation learning on large graphs [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1025-1035. | 
																													
																						| 10 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780. | 
																													
																						| 11 | SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// Proceedings of the 2018 European Semantic Web Conference, LNCS 10843. Cham: Springer, 2018: 593-607. | 
																													
																						| 12 | ZHANG C, SONG D, HUANG C, et al. Heterogeneous graph neural network [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 793-803. | 
																													
																						| 13 | ZEB A, SAIF S, CHEN J, et al. Complex graph convolutional network for link prediction in knowledge graphs [J]. Expert Systems with Applications, 2022, 200: No.116796. | 
																													
																						| 14 | YANG J, YANG L T, WANG H, et al. Tensor graph attention network for knowledge reasoning in Internet of Things [J]. IEEE Internet of Things Journal, 2022, 9(12): 9128-9137. | 
																													
																						| 15 | YU L, SUN L, DU B, et al. Heterogeneous graph representation learning with relation awareness [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(6): 5935-5947. | 
																													
																						| 16 | YUAN L, BAI Y, XING Z, et al. Predicting entity relations across different security databases by using graph attention network [C]// IEEE 45th Annual Computers, Software, and Applications Conference. Piscataway: IEEE, 2021: 834-843. | 
																													
																						| 17 | ANSARIZADEH F, TAY D B, THIRUVADY D, et al. Deterministic sampling in heterogeneous graph neural networks [J]. Pattern Recognition Letters, 2023, 172: 74-81. | 
																													
																						| 18 | KATZ L. A new status index derived from sociometric analysis [J]. Psychometrika, 1953, 18(1): 39-43. | 
																													
																						| 19 | FREEMAN L C. A set of measures of centrality based on betweenness [J]. Sociometry, 1977, 40(1): 35-41. | 
																													
																						| 20 | NIST Computer Security Division, Information Technology Laboratory. National vulnerability database [DB/OL]. [2023-05-08]. . | 
																													
																						| 21 | MITRE. Common weakness enumeration [DB/OL]. [2023-05-08]. . | 
																													
																						| 22 | MITRE. Adversarial tactics, techniques, and common knowledge [DB/OL]. [2023-05-08]. . | 
																													
																						| 23 | MITRE. Common vulnerabilities and exposures [EB/OL]. [2023-05-08]. . | 
																													
																						| 24 | MITRE. Common attack pattern enumerations and classifications [EB/OL]. [2023-05-18]. . | 
																													
																						| 25 | MITRE. Structured Threat Information eXpression — STIX[EB/OL]. [2023-05-08]. . | 
																													
																						| 26 | SOLÁ L, ROMANCE M, CRIADO R, et al. Eigenvector centrality of nodes in multiplex networks [J]. Chaos, 2013, 23(3): No.033131. | 
																													
																						| 27 | MA N, GUAN J, ZHAO Y. Bringing PageRank to the citation analysis [J]. Information Processing and Management, 2008, 44 (2): 800-810. | 
																													
																						| 28 | GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864. | 
																													
																						| 29 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. | 
																													
																						| 30 | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations [C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. |