《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (9): 2949-2956.DOI: 10.11772/j.issn.1001-9081.2024081166
• 多媒体计算与计算机仿真 • 上一篇
收稿日期:2024-08-19
									
				
											修回日期:2024-11-28
									
				
											接受日期:2024-12-10
									
				
											发布日期:2025-02-17
									
				
											出版日期:2025-09-10
									
				
			通讯作者:
					刘立群
							作者简介:李进(2001—),女,江西抚州人,硕士研究生,主要研究方向:深度学习、图像融合
				
							基金资助:Received:2024-08-19
									
				
											Revised:2024-11-28
									
				
											Accepted:2024-12-10
									
				
											Online:2025-02-17
									
				
											Published:2025-09-10
									
			Contact:
					Liqun LIU   
							About author:LI Jin, born in 2001, M. S. candidate. Her research interests include deep learning, image fusion.				
							Supported by:摘要:
在合成孔径雷达(SAR)与可见光图像的融合研究中,现有方法通常面临着模态间差异大、信息丢失和计算复杂度高等挑战。因此,提出一种基于残差Swin Transformer模块的SAR和可见光图像融合算法。首先,采用Swin Transformer作为主干提取全局特征,并用一个全注意力特征编码主干网络建模远程依赖关系。其次,为了提高融合效果,设计3种不同的融合策略:基于序列矩阵的L1范数的特征融合策略、基于图像金字塔的融合策略及加法融合策略。再次,将3个结果加权平均以得到最终的融合结果,从而有效地调节像素值并减少SAR图像的噪声,更好地保留可见光图像清晰的细节和结构信息,并融合SAR图像和可见光图像不同尺度的地物特征信息。最后,在SEN1-2数据集、QXS-SAROPT数据集以及OSdataset上进行了大量实验。实验结果表明,所提算法与基于卷积神经网络的通用图像融合框架IFCNN、基于潜在低秩表示的多级分解(MDLatLRR)等算法相比,主观视觉效果更优,在大多数客观评价指标上有明显提升,且在保留源图像特征的同时具备优秀的噪声抑制和图像保真能力。
中图分类号:
李进, 刘立群. 基于残差Swin Transformer的SAR与可见光图像融合[J]. 计算机应用, 2025, 45(9): 2949-2956.
Jin LI, Liqun LIU. SAR and visible image fusion based on residual Swin Transformer[J]. Journal of Computer Applications, 2025, 45(9): 2949-2956.
| a | b | c | AG | MI | SD | PSNR/dB | SF | EN | 
|---|---|---|---|---|---|---|---|---|
| 0.05 | 0.05 | 0.9 | 13.26 | 2.32 | 49.22 | 55.51 | 26.74 | 4.79 | 
| 0.10 | 0.10 | 0.8 | 12.40 | 1.98 | 47.68 | 54.72 | 26.55 | 4.37 | 
| 0.15 | 0.15 | 0.7 | 12.63 | 2.72 | 48.85 | 56.21 | 28.45 | 5.77 | 
| 12.04 | 2.78 | 49.53 | 56.84 | 30.31 | 6.18 | |||
| 0.25 | 0.25 | 0.5 | 10.48 | 2.64 | 49.66 | 53.92 | 27.90 | 5.54 | 
| 0.30 | 0.30 | 0.4 | 9.74 | 2.36 | 44.34 | 52.44 | 25.36 | 5.11 | 
| 0.35 | 0.35 | 0.3 | 8.65 | 1.57 | 44.60 | 50.47 | 24.10 | 4.86 | 
| 0.40 | 0.40 | 0.2 | 7.36 | 1.62 | 42.05 | 48.33 | 25.08 | 3.95 | 
| 0.45 | 0.45 | 0.1 | 6.95 | 1.79 | 40.84 | 47.70 | 23.52 | 4.06 | 
表1 融合策略参数设置的测试结果
Tab. 1 Test results of fusion strategy parameter settings
| a | b | c | AG | MI | SD | PSNR/dB | SF | EN | 
|---|---|---|---|---|---|---|---|---|
| 0.05 | 0.05 | 0.9 | 13.26 | 2.32 | 49.22 | 55.51 | 26.74 | 4.79 | 
| 0.10 | 0.10 | 0.8 | 12.40 | 1.98 | 47.68 | 54.72 | 26.55 | 4.37 | 
| 0.15 | 0.15 | 0.7 | 12.63 | 2.72 | 48.85 | 56.21 | 28.45 | 5.77 | 
| 12.04 | 2.78 | 49.53 | 56.84 | 30.31 | 6.18 | |||
| 0.25 | 0.25 | 0.5 | 10.48 | 2.64 | 49.66 | 53.92 | 27.90 | 5.54 | 
| 0.30 | 0.30 | 0.4 | 9.74 | 2.36 | 44.34 | 52.44 | 25.36 | 5.11 | 
| 0.35 | 0.35 | 0.3 | 8.65 | 1.57 | 44.60 | 50.47 | 24.10 | 4.86 | 
| 0.40 | 0.40 | 0.2 | 7.36 | 1.62 | 42.05 | 48.33 | 25.08 | 3.95 | 
| 0.45 | 0.45 | 0.1 | 6.95 | 1.79 | 40.84 | 47.70 | 23.52 | 4.06 | 
| 算法 | AG | MI | SD | PSNR/dB | SF | EN | 
|---|---|---|---|---|---|---|
| IFCNN[ | 9.83 | 2.59 | 47.17 | 53.63 | 27.28 | 5.92 | 
| GANMcC[ | 10.92 | 2.76 | 49.88 | 55.12 | 26.60 | 5.74 | 
| MDLatLRR[ | 11.44 | 2.61 | 47.20 | 53.24 | 26.31 | 5.42 | 
| Swinfuse[ | 12.68 | 2.62 | 49.36 | 56.79 | 30.29 | 6.08 | 
| DSFusion[ | 13.32 | 2.74 | 47.27 | 60.33 | 29.64 | 5.89 | 
| 本文算法 | 12.04 | 2.78 | 49.53 | 56.84 | 30.31 | 6.18 | 
表2 SEN1-2数据集上不同图像融合算法的定量测试结果
Tab. 2 Quantitative test results of different image fusion algorithms on SEN1-2 dataset
| 算法 | AG | MI | SD | PSNR/dB | SF | EN | 
|---|---|---|---|---|---|---|
| IFCNN[ | 9.83 | 2.59 | 47.17 | 53.63 | 27.28 | 5.92 | 
| GANMcC[ | 10.92 | 2.76 | 49.88 | 55.12 | 26.60 | 5.74 | 
| MDLatLRR[ | 11.44 | 2.61 | 47.20 | 53.24 | 26.31 | 5.42 | 
| Swinfuse[ | 12.68 | 2.62 | 49.36 | 56.79 | 30.29 | 6.08 | 
| DSFusion[ | 13.32 | 2.74 | 47.27 | 60.33 | 29.64 | 5.89 | 
| 本文算法 | 12.04 | 2.78 | 49.53 | 56.84 | 30.31 | 6.18 | 
| 算法 | AG | MI | SD | PSNR/dB | SF | EN | 
|---|---|---|---|---|---|---|
| IFCNN[ | 10.41 | 2.13 | 28.55 | 58.69 | 43.72 | 5.78 | 
| GANMcC[ | 18.07 | 2.71 | 39.98 | 61.20 | 46.39 | 6.03 | 
| MDLatLRR[ | 13.34 | 1.89 | 36.32 | 52.46 | 27.48 | 5.34 | 
| Swinfuse[ | 22.19 | 2.04 | 57.71 | 58.83 | 28.95 | 5.95 | 
| DSFusion[ | 20.48 | 2.44 | 40.72 | 59.78 | 47.33 | 6.11 | 
| 本文算法 | 8.93 | 2.79 | 30.96 | 60.91 | 48.14 | 6.14 | 
表3 QXS-SAROPT数据集上不同图像融合算法的定量测试结果
Tab. 3 Quantitative test results of different image fusion algorithms on QXS-SAROPT dataset
| 算法 | AG | MI | SD | PSNR/dB | SF | EN | 
|---|---|---|---|---|---|---|
| IFCNN[ | 10.41 | 2.13 | 28.55 | 58.69 | 43.72 | 5.78 | 
| GANMcC[ | 18.07 | 2.71 | 39.98 | 61.20 | 46.39 | 6.03 | 
| MDLatLRR[ | 13.34 | 1.89 | 36.32 | 52.46 | 27.48 | 5.34 | 
| Swinfuse[ | 22.19 | 2.04 | 57.71 | 58.83 | 28.95 | 5.95 | 
| DSFusion[ | 20.48 | 2.44 | 40.72 | 59.78 | 47.33 | 6.11 | 
| 本文算法 | 8.93 | 2.79 | 30.96 | 60.91 | 48.14 | 6.14 | 
| 算法 | AG | MI | SD | PSNR/dB | SF | EN | 
|---|---|---|---|---|---|---|
| IFCNN[ | 9.54 | 2.43 | 24.77 | 44.28 | 34.61 | 5.04 | 
| GANMcC[ | 10.23 | 2.36 | 25.41 | 46.01 | 38.85 | 5.57 | 
| MDLatLRR[ | 11.80 | 2.48 | 27.86 | 48.69 | 37.35 | 4.84 | 
| Swinfuse[ | 13.64 | 2.51 | 25.99 | 48.34 | 39.97 | 5.73 | 
| DSFusion[ | 18.66 | 2.54 | 26.82 | 50.26 | 38.59 | 7.32 | 
| 本文算法 | 10.37 | 2.56 | 27.83 | 50.88 | 40.13 | 5.22 | 
表4 OSdataset上不同图像融合算法的定量测试结果
Tab. 4 Quantitative test results of different image fusion algorithms on OSdataset
| 算法 | AG | MI | SD | PSNR/dB | SF | EN | 
|---|---|---|---|---|---|---|
| IFCNN[ | 9.54 | 2.43 | 24.77 | 44.28 | 34.61 | 5.04 | 
| GANMcC[ | 10.23 | 2.36 | 25.41 | 46.01 | 38.85 | 5.57 | 
| MDLatLRR[ | 11.80 | 2.48 | 27.86 | 48.69 | 37.35 | 4.84 | 
| Swinfuse[ | 13.64 | 2.51 | 25.99 | 48.34 | 39.97 | 5.73 | 
| DSFusion[ | 18.66 | 2.54 | 26.82 | 50.26 | 38.59 | 7.32 | 
| 本文算法 | 10.37 | 2.56 | 27.83 | 50.88 | 40.13 | 5.22 | 
| 融合策略 | AG | MI | SD | PSNR/dB | SF | EN | 
|---|---|---|---|---|---|---|
| 策略1 | 14.52 | 2.58 | 48.29 | 55.97 | 31.26 | 6.75 | 
| 策略2+3 | 15.54 | 2.42 | 47.83 | 55.86 | 27.86 | 6.14 | 
| 策略1+2 | 14.31 | 2.62 | 48.59 | 56.04 | 28.63 | 6.91 | 
| 策略1+3 | 15.76 | 2.61 | 48.11 | 55.75 | 29.98 | 6.87 | 
| 本文算法 | 15.97 | 2.60 | 49.54 | 56.06 | 30.79 | 6.89 | 
表5 在SEN1-2数据集上不同融合策略的消融实验结果
Tab. 5 Ablation experimental results of different fusion strategies on SEN1-2 dataset
| 融合策略 | AG | MI | SD | PSNR/dB | SF | EN | 
|---|---|---|---|---|---|---|
| 策略1 | 14.52 | 2.58 | 48.29 | 55.97 | 31.26 | 6.75 | 
| 策略2+3 | 15.54 | 2.42 | 47.83 | 55.86 | 27.86 | 6.14 | 
| 策略1+2 | 14.31 | 2.62 | 48.59 | 56.04 | 28.63 | 6.91 | 
| 策略1+3 | 15.76 | 2.61 | 48.11 | 55.75 | 29.98 | 6.87 | 
| 本文算法 | 15.97 | 2.60 | 49.54 | 56.06 | 30.79 | 6.89 | 
| 融合策略 | AG | MI | SD | PSNR/dB | SF | EN | 
|---|---|---|---|---|---|---|
| 策略1 | 12.51 | 2.96 | 53.08 | 62.37 | 41.25 | 7.18 | 
| 策略2+3 | 8.12 | 2.58 | 40.27 | 61.54 | 30.86 | 6.46 | 
| 策略1+2 | 12.48 | 3.09 | 43.65 | 63.12 | 38.39 | 7.51 | 
| 策略1+3 | 12.66 | 3.03 | 42.79 | 62.49 | 37.71 | 7.24 | 
| 本文算法 | 8.83 | 3.14 | 40.94 | 63.59 | 31.87 | 7.42 | 
表6 在QXS-SAROPT数据集上不同融合策略的消融实验结果
Tab. 6 Ablation experimental results of different fusion strategies on QXS-SAROPT dataset
| 融合策略 | AG | MI | SD | PSNR/dB | SF | EN | 
|---|---|---|---|---|---|---|
| 策略1 | 12.51 | 2.96 | 53.08 | 62.37 | 41.25 | 7.18 | 
| 策略2+3 | 8.12 | 2.58 | 40.27 | 61.54 | 30.86 | 6.46 | 
| 策略1+2 | 12.48 | 3.09 | 43.65 | 63.12 | 38.39 | 7.51 | 
| 策略1+3 | 12.66 | 3.03 | 42.79 | 62.49 | 37.71 | 7.24 | 
| 本文算法 | 8.83 | 3.14 | 40.94 | 63.59 | 31.87 | 7.42 | 
| 融合策略 | AG | MI | SD | PSNR/dB | SF | EN | 
|---|---|---|---|---|---|---|
| 策略1 | 7.72 | 2.46 | 42.45 | 37.64 | 21.10 | 3.67 | 
| 策略2+3 | 7.65 | 2.61 | 40.99 | 38.09 | 22.34 | 3.44 | 
| 策略1+2 | 9.96 | 3.53 | 45.12 | 42.90 | 23.50 | 4.65 | 
| 策略1+3 | 9.35 | 3.67 | 43.66 | 42.17 | 26.44 | 5.28 | 
| 本文算法 | 10.68 | 3.85 | 46.10 | 42.33 | 25.76 | 5.54 | 
表7 在OSdataset上不同融合策略的消融实验结果
Tab. 7 Ablation experimental results of different fusion strategies on OSdataset
| 融合策略 | AG | MI | SD | PSNR/dB | SF | EN | 
|---|---|---|---|---|---|---|
| 策略1 | 7.72 | 2.46 | 42.45 | 37.64 | 21.10 | 3.67 | 
| 策略2+3 | 7.65 | 2.61 | 40.99 | 38.09 | 22.34 | 3.44 | 
| 策略1+2 | 9.96 | 3.53 | 45.12 | 42.90 | 23.50 | 4.65 | 
| 策略1+3 | 9.35 | 3.67 | 43.66 | 42.17 | 26.44 | 5.28 | 
| 本文算法 | 10.68 | 3.85 | 46.10 | 42.33 | 25.76 | 5.54 | 
| [1] | HUANG S, ZHANG X, WANG C, et al. Two-step fusion method for generating 1 km seamless multi-layer soil moisture with high accuracy in the Qinghai-Tibet plateau [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 197: 346-363. | 
| [2] | GU Y, WANG Y, WU Y, et al. Novel 3D photosynthetic traits derived from the fusion of UAV LiDAR point cloud and multispectral imagery in wheat [J]. Remote Sensing of Environment, 2024, 311: No.114244. | 
| [3] | 邢庆宝. 基于深度学习的SAR与可见光图像融合算法研究[D]. 南昌:南昌大学, 2023:22-24. | 
| XING Q B. Research on deep learning-based SAR and visible light image fusion algorithm[D]. Nanchang: Nanchang University, 2023: 22-24. | |
| [4] | LIU J, DIAN R, LI S, et al. SGFusion: a saliency guided deep-learning framework for pixel-level image fusion [J]. Information Fusion, 2023, 91: 205-214. | 
| [5] | 周涛,刘珊,董雅丽,等. 多尺度变换像素级医学图像融合:研究进展、应用和挑战[J]. 中国图象图形学报, 2021, 26(9):2094-2110. | 
| ZHOU T, LIU S, DONG Y L, et al. Research on pixel-level image fusion based on multi-scale transformation: progress application and challenges [J]. Journal of Image and Graphics, 2021, 26(9): 2094-2110. | |
| [6] | 徐景余,包妮沙,郎洁双,等.优化稀疏表示的迷彩伪装目标高光谱识别方法研究[J].光谱学与光谱分析,2024,44(12):3534-3542. | 
| XU J Y, BAO N S, LANG J S, et al. A hyperspectral recognition method for camouflaged targets based on background dictionary sparse representation [J]. Spectroscopy and Spectral Analysis, 2024,44(12):3534-3542. | |
| [7] | LI X, LEI L, SUN Y, et al. Multimodal bilinear fusion network with second-order attention based channel selection for land cover classification [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1011-1026. | 
| [8] | YE Y, LIU W, ZHOU L, et al. An unsupervised SAR and optical image fusion network based on structure-texture decomposition [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: No.4028305. | 
| [9] | KONG Y, HONG F, LEUNG H, et al. A fusion method of optical image and SAR image based on dense-UGAN and Gram-Schmidt transformation [J]. Remote Sensing, 2021, 13(21): No.4274. | 
| [10] | YIN H, XIAO J. Laplacian pyramid generative adversarial network for infrared and visible image fusion [J]. IEEE Signal Processing Letters, 2022, 29: 1988-1992. | 
| [11] | DOSOVISKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. [2024-08-27]. . | 
| [12] | HU L, SU S, ZUO Z, et al. A visible and synthetic aperture radar image fusion algorithm based on a Transformer and a convolutional neural network [J]. Electronics, 2024, 13(12): No.2365. | 
| [13] | LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical Vision Transformer using shifted windows [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. | 
| [14] | ZHOU H, LIU Q, WANG Y. PanFormer: a Transformer based model for pan-sharpening [C]// Proceedings of the 2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2022: 1-6. | 
| [15] | 范文盛,刘帆,李明. 基于双分支U形Transformer的遥感图像融合[J]. 光子学报, 2023, 52(4): No.0428002. | 
| FAN W S, LIU F, LI M. Remote sensing image fusion based on two-branch U-shaped Transformer [J]. Acta Photonica Sinica, 2023, 52(4): No.0428002. | |
| [16] | LI S, WANG G, ZHANG H, et al. SDRSwin: a residual Swin Transformer network with saliency detection for infrared and visible image fusion [J]. Remote Sensing, 2023, 15(18): No.4467. | 
| [17] | 李碧草,卢佳熙,刘洲峰,等. 基于Swin Transformer和混合特征聚合的红外与可见光图像融合方法[J]. 红外技术, 2023, 45(7): 721-731. | 
| LI B C, LU J X, LIU Z F, et al. Infrared and visible light image fusion method based on Swin Transformer and hybrid feature aggregation [J]. Infrared Technology, 2023, 45(7): 721-731. | |
| [18] | LUO Y, LUO Z. Infrared and visible image fusion algorithm based on improved residual Swin Transformer and Sobel operators [J]. IEEE Access, 2024, 12: 82134-82145. | 
| [19] | WANG Z, CHEN Y, SHAO W, et al. Swinfuse: a residual Swin Transformer fusion network for infrared and visible images [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: No.5016412. | 
| [20] | SCHMITT M, HUGHES L H, ZHU X X. The SEN1-2 dataset for deep learning in SAR-optical data fusion [J]. SPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, Ⅳ-1: 141-146. | 
| [21] | HUANG M, XU Y, QIAN L, et al. The QXS-SAROPT dataset for deep learning in SAR-optical data fusion [EB/OL]. [2024-05-21]. . | 
| [22] | XIANG Y, TAO R, WANG F, et al. Automatic registration of optical and SAR images via improved phase congruency model [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5847-5861. | 
| [23] | ZHANG Y, LIU Y, SUN P, et al. IFCNN: a general image fusion framework based on convolutional neural network [J]. Information Fusion, 2020, 54:99-118. | 
| [24] | MA J, ZHANG H, SHAO Z, et al. GANMcC: a generative adversarial network with multiclassification constraints for infrared and visible image fusion [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: No.5005014. | 
| [25] | LI H, WU X, KITTLER J. MDLatLRR: a novel decomposition method for infrared and visible image fusion [J]. IEEE Transactions on Image Processing, 2020, 29:4733-4746. | 
| [26] | LIU K, LI M, CHEN C, et al. DSFusion: infrared and visible image fusion method combining detail and scene information [J]. Pattern Recognition, 2024, 154: No.110633. | 
| [1] | 张宏俊, 潘高军, 叶昊, 陆玉彬, 缪宜恒. 结合深度学习和张量分解的多源异构数据分析方法[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2838-2847. | 
| [2] | 殷兵, 凌震华, 林垠, 奚昌凤, 刘颖. 兼容缺失模态推理的情感识别方法[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2764-2772. | 
| [3] | 廖炎华, 鄢元霞, 潘文林. 基于YOLOv9的交通路口图像的多目标检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2555-2565. | 
| [4] | 周金, 李玉芝, 张徐, 高硕, 张立, 盛家川. 复杂电磁环境下的调制识别网络[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2672-2682. | 
| [5] | 葛丽娜, 王明禹, 田蕾. 联邦学习的高效性研究综述[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2387-2398. | 
| [6] | 彭鹏, 蔡子婷, 刘雯玲, 陈才华, 曾维, 黄宝来. 基于CNN和双向GRU混合孪生网络的语音情感识别方法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2515-2521. | 
| [7] | 张硕, 孙国凯, 庄园, 冯小雨, 王敬之. 面向区块链节点分析的eclipse攻击动态检测方法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2428-2436. | 
| [8] | 陶永鹏, 柏诗淇, 周正文. 基于卷积和Transformer神经网络架构搜索的脑胶质瘤多组织分割网络[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2378-2386. | 
| [9] | 索晋贤, 张丽萍, 闫盛, 王东奇, 张雅雯. 可解释的深度知识追踪方法综述[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2043-2055. | 
| [10] | 王震洲, 郭方方, 宿景芳, 苏鹤, 王建超. 面向智能巡检的视觉模型鲁棒性优化方法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2361-2368. | 
| [11] | 齐巧玲, 王啸啸, 张茜茜, 汪鹏, 董永峰. 基于元学习的标签噪声自适应学习算法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2113-2122. | 
| [12] | 赵小阳, 许新征, 李仲年. 物联网应用中的可解释人工智能研究综述[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2169-2179. | 
| [13] | 花天辰, 马晓宁, 智慧. 基于浅层人工神经网络的可移植执行恶意软件静态检测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1911-1921. | 
| [14] | 李岚皓, 严皓钧, 周号益, 孙庆赟, 李建欣. 基于神经网络的多尺度信息融合时间序列长期预测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1776-1783. | 
| [15] | 牛四杰, 刘昱良. 基于知识蒸馏双分支结构的视网膜病变辅助诊断方法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1410-1414. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
