| 1 | PAWLAK Z, SKOWRON A. Rough sets: some extensions[J]. Information Sciences, 2007, 177(1): 28-40. 10.1016/j.ins.2006.06.006 | 
																													
																						| 2 | PAWLAK Z. Rough sets and decision algorithms [C]// Proceedings of the 2000 International Conference on Rough Sets and Current Trends in Computing, LNCS2005. Berlin: Springer, 2000: 30-45. | 
																													
																						| 3 | 余顺坤,闫泓序.基于双阈值约束容差优势关系的评价模型[J].计算机应用, 2016, 36(11): 3131-3135. 10.11772/j.issn.1001-9081.2016.11.3131 | 
																													
																						|  | YU S K, YAN H X. Evaluation model based on dual-threshold constrained tolerance dominance relation[J]. Journal of Computer Applications, 2016, 36(11): 3131-3135. 10.11772/j.issn.1001-9081.2016.11.3131 | 
																													
																						| 4 | ZHANG Q H, XIE Q, WANG G Y. A survey on rough set theory and its applications[J]. CAAI Transactions on Intelligence Technology, 2016, 1(4): 323-333. 10.1016/j.trit.2016.11.001 | 
																													
																						| 5 | CHEN H M, LI T R, LUO C, et al. A decision-theoretic rough set approach for dynamic data mining[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(6): 1958-1970. 10.1109/tfuzz.2014.2387877 | 
																													
																						| 6 | CHEN H M, LI T R, LUO C, et al. A rough set-based method for updating decision rules on attribute values’ coarsening and refining[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(12): 2886-2899. 10.1109/tkde.2014.2320740 | 
																													
																						| 7 | SUSHIL M, ŠUSTER S, DAELEMANS W. Rule induction for global explanation of trained models [C]// Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Stroudsburg, PA: Association for Computational Linguistics, 2018: 82-97. 10.18653/v1/w18-5411 | 
																													
																						| 8 | AKGÖBEK Ö. A rule induction algorithm for knowledge discovery and classification[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2013, 21(5): 1223-1241. | 
																													
																						| 9 | CHEN X Y, LI G Y, SUN Y H. Rule extraction model based on decision dependency degree[J]. Mathematical Problems in Engineering, 2019, 2019: No.5850410. 10.1155/2019/5850410 | 
																													
																						| 10 | TRABELSI S, ELOUEDI Z, LINGRAS P. Classification systems based on rough sets under the belief function framework[J]. International Journal of Approximate Reasoning, 2011, 52(9): 1409-1432. 10.1016/j.ijar.2011.08.002 | 
																													
																						| 11 | HU X H, CERCONE N. Discovering maximal generalized decision rules through horizontal and vertical data reduction[J]. Computational Intelligence, 2001, 17(4): 685-702. 10.1111/0824-7935.00169 | 
																													
																						| 12 | LIAO S H, CHANG H K. A rough set-based association rule approach for a recommendation system for online consumers[J]. Information Processing and Management, 2016, 52(6): 1142-1160. 10.1016/j.ipm.2016.05.003 | 
																													
																						| 13 | ZHAO S Y, TSANG E C C, CHEN D G, et al. Building a rule-based classifier — a fuzzy-rough set approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(5): 624-638. | 
																													
																						| 14 | ŚWINIARSKI R W. Rough sets methods in feature reduction and classification[J]. International Journal of Applied Mathematics and Computer Science, 2001, 11(3): 565-582. | 
																													
																						| 15 | CHEN D G, WANG C Z, HU Q H. A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets[J]. Information Sciences, 2007, 177(17): 3500-3518. 10.1016/j.ins.2007.02.041 | 
																													
																						| 16 | YE M Q, WU X D, HU X G, et al. Knowledge reduction for decision tables with attribute value taxonomies[J]. Knowledge-Based Systems, 2014, 56: 68-78. 10.1016/j.knosys.2013.10.022 | 
																													
																						| 17 | XU W H, LI Y, LIAO X W. Approaches to attribute reductions based on rough set and matrix computation in inconsistent ordered information systems[J]. Knowledge-Based Systems, 2012, 27: 78-91. 10.1016/j.knosys.2011.11.013 | 
																													
																						| 18 | YAO M C, YANG J, ZHANG H S, et al. An attribute value reduction algorithm based on set operations [C]// Proceedings of the 1st International Workshop on Database Technology and Applications. Piscataway: IEEE, 2009: 181-183. 10.1109/dbta.2009.167 | 
																													
																						| 19 | WEI W, WU X Y, LIANG J Y, et al. Discernibility matrix based incremental attribute reduction for dynamic data[J]. Knowledge-Based Systems, 2018, 140: 142-157. 10.1016/j.knosys.2017.10.033 | 
																													
																						| 20 | 林嘉宜,彭宏,郑启伦.一种新的基于粗糙集的值约简算法[J].计算机工程, 2003, 29(4): 70-71, 129. 10.3969/j.issn.1000-3428.2003.04.028 | 
																													
																						|  | LIN J Y, PENG H, ZHENG Q L. A new algorithm for value reduction based on rough set[J]. Computer Engineering, 2003, 29(4): 70-71, 129. 10.3969/j.issn.1000-3428.2003.04.028 | 
																													
																						| 21 | CHEN M C, YUAN J L, LI L, et al. A fast heuristic attribute reduction algorithm using Spark [C]// Proceedings of the IEEE 37th International Conference on Distributed Computing Systems. Piscataway: IEEE, 2017: 2393-2398. 10.1109/icdcs.2017.38 | 
																													
																						| 22 | 张利,卢秀颖,吴华玉,等.基于粗糙集的启发式值约简的改进算法[J].仪器仪表学报, 2009, 30(1): 82-85. 10.3321/j.issn:0254-3087.2009.01.016 | 
																													
																						|  | ZHANG L, LU X Y, WU H Y, et al. Improved heuristic algorithm used in attribute value reduction of rough set[J]. Chinese Journal of Scientific Instrument, 2009, 30(1): 82-85. 10.3321/j.issn:0254-3087.2009.01.016 | 
																													
																						| 23 | ZHANG H, YE M Q, WU C R. Attribute value generalization reduction based on conditional combination entropy[J]. Metallurgical and Mining Industry, 2015, 7(10): 174-182. | 
																													
																						| 24 | AZAD M, CHIKALOV I, MOSHKOV M. Three approaches to deal with inconsistent decision tables-comparison of decision tree complexity [C]// Proceedings of the 2013 International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing, LNCS8170. Berlin: Springer, 2013: 46-54. | 
																													
																						| 25 | PETERS J F, SKOWRON A, ŚLȨZAK D, et al. Transactions on Rough Sets XIX, LNCS 8988[M]. Singapore: Springer, 2015: 89-113. | 
																													
																						| 26 | DEAN J, GHEMAWAT S. MapReduce: simplified data processing on large clusters[J]. Communications of the ACM, 2008, 51(1): 107-113. 10.1145/1327452.1327492 | 
																													
																						| 27 | QIAN J, XIA M, YUE X D. Parallel knowledge acquisition algorithms for big data using MapReduce[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(6): 1007-1021. 10.1007/s13042-016-0624-x | 
																													
																						| 28 | ALI R, SIDDIQI M H, LEE S. Rough set-based approaches for discretization: a compact review[J]. Artificial Intelligence Review, 2015, 44(2): 235-263. 10.1007/s10462-014-9426-2 | 
																													
																						| 29 | JIA X Y, RAO Y, SHANG L, et al. Similarity-based attribute reduction in rough set theory: a clustering perspective[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(5): 1047-1060. 10.1007/s13042-019-00959-w | 
																													
																						| 30 | JIA X Y, SHANG L, ZHOU B, et al. Generalized attribute reduct in rough set theory[J]. Knowledge-Based Systems, 2016, 91: 204-218. 10.1016/j.knosys.2015.05.017 | 
																													
																						| 31 | 闫泓序,余顺坤,林依青.我国工业电力用户价值画像模型构建与应用研究[J].中国管理科学, 2021, 29(10): 224-235. | 
																													
																						|  | YAN H X, YU S K, LIN Y Q. Research on the construction and application of the customer value portrait model of industrial power enterprise in China[J]. Chinese Journal of Management Science, 2021, 29(10): 224-235. | 
																													
																						| 32 | TRIPATHY B K, ACHARJYA D P, CYNTHYA V. A framework for intelligent medical diagnosis using rough set with formal concept analysis[J]. International Journal of Artificial Intelligence and Applications, 2011, 2(2): 45-66. 10.5121/ijaia.2011.2204 |