[1] ZHANG L P, ZHANG H Y, SHEN H F, et al. A super-resolution reconstruction algorithm for surveillance images[J]. Signal Processing, 2010, 90(3):848-859. [2] THORNTON M W, ATKINSON P M, HOLLAND D A. Sub-pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping[J]. International Journal of Remote Sensing, 2006, 27(3):473-491. [3] SHI W Z, CABALLERO J, LEDIG C, et al. Cardiac image super-resolution with global correspondence using multi-atlas PpatchMatch[J]. Medical Image Computing and Computer-Assisted Intervention, 2013, 16(Pt 3):9-16. [4] GUNTURK B K, BATUR A U, ALTUNBASAK Y, et al. Eigenface-domain super-resolution for face recognition[J]. IEEE Transactions on Image Processing, 2003, 12(5):597-606. [5] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 2003, 29(6):1153-1160. [6] 孙旭,李晓光,李嘉锋,等.基于深度学习的图像超分辨率复原研究进展[J].自动化学报,2017,43(5):697-709.(SUN X, LI X G, LI J F, et al. Review on deep learning based image super-resolution restoration algorithms[J]. Acta Automatica Sinica, 2017, 43(5):697-709.) [7] IRANI M, PELEG S. Motion analysis for image enhancement:resolution, occlusion, and transparency[J]. Journal of Visual Communication and Image Representation, 1993, 4(4):324-335. [8] BAUSCHKE H H, BORWEIN J M. On projection algorithms for solving convex feasibility problems[J]. SIAM Review, 1996, 38(3):367-426. [9] SCHULTZ R R, STEVENSON R L. Extraction of high-resolution frames from video sequences[J]. IEEE Transactions on Image Processing, 1996, 5(6):996-1011. [10] TIMOFTE R, de SMET V, van GOOL L. Anchored neighborhood regression for fast example-based super-resolution[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2013:1920-1927. [11] TIMOFTE R, de SMET V, van GOOL L. A+:adjusted anchored neighborhood regression for fast super-resolution[C]//Proceedings of the 12th Asian Conference on Computer Vision Computer Vision. Berlin:Springer, 2014:111-126. [12] YANG J C, WRIGHT J, HUANG T S, et al. Image super-resolution as sparse representation of raw image patches[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2008:1-8. [13] YANG J C, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11):2861-2873. [14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. North Miami Beach, FL:Curran Associates Inc. 2012:1097-1105. [15] DONG C, CHEN C L, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307. [16] DONG C, CHEN C L, TANG X O. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the 2016 European Conference on Computer Vision. Berlin:Springer, 2016:391-407. [17] WANG Y F, WANG L J, WANG H Y, et al. End-to-end image super-resolution via deep and shallow convolutional networks[EB/OL].[2018-04-01]. http://cn.arxiv.org/pdf/1607.07680. [18] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE., 2016:1646-1654. [19] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2018-04-01]. https://arxiv.org/pdf/1409.1556.pdf. [20] TAI Y, YANG J, LIU X M, et al. MemNet:a persistent memory network for image restoration[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2017:4549-4557. [21] HE K, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:770-778. [22] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning. Madison, Wisconsin:Omnipress, 2010:807-814. [23] HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2015:1026-1034. [24] SUN J, XU Z B, SHUM H-Y, et al. Image super-resolution using gradient profile prior[C]//CVPR 2008:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2008:1-8. [25] NAH S, KIM T H, LEE K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2017:257-265. [26] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of the 2014 European Conference on Computer Vision, LNCS 8689. Berlin:Springer, 2014:818-833. [27] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [28] HORÉ A, ZIOU D. Image quality metrics:PSNR vs. SSIM[C]//Proceedings of the 20th International Conference on Pattern Recognition. Piscataway, NJ:IEEE, 2010:2366-2369. [29] YE Y X, SHAN J, BRUZZONE L, et al. Robust registration of multimodal remote sensing images based on structural similarity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2941-2958. [30] TIMOFTE R, AGUSTSSON E, van GOOL L, et al. NTIRE 2017 challenge on single image super-resolution:methods and results[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway, NJ:IEEE, 2017:1110-1121. [31] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of the 2012 British Machine Vision Conference. Durham:BMVA Press, 2012:135.1-135.10. [32] ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]//Proceedings of the 7th International Conference on Curves and Surfaces. Berlin:Springer, 2010:711-730 [33] HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2015:5197-5206. |