Journal of Computer Applications ›› 2019, Vol. 39 ›› Issue (5): 1312-1317.DOI: 10.11772/j.issn.1001-9081.2018102213

• Artificial intelligence • Previous Articles     Next Articles

Path planning of mobile robot based on improved asymptotically-optimal bidirectional rapidly-exploring random tree algorithm

WANG Kun1, ZENG Guohui1, LU Dunke1, HUANG Bo1, LI Xiaobin2   

  1. 1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
    2. School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 200235, China
  • Received:2018-11-05 Revised:2018-12-14 Online:2019-05-10 Published:2019-05-14
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (61603242), the Open Project of Jiangxi Province Collaborative Innovation Center of Economic Crime Investigation and Prevention and Control Technology (JXJZXTCX-030).

基于改进渐进最优的双向快速扩展随机树的移动机器人路径规划算法

王坤1, 曾国辉1, 鲁敦科1, 黄勃1, 李晓斌2   

  1. 1. 上海工程技术大学 电子电气工程学院, 上海 201620;
    2. 上海应用技术大学 电气与电子工程学院, 上海 200235
  • 通讯作者: 王坤
  • 作者简介:王坤(1995-),男,安徽亳州人,硕士研究生,主要研究方向:机器人控制、路径规划算法;曾国辉(1975-),男,江西乐安人,副教授,博士,主要研究方向:机器人控制、电力电子及其控制技术;鲁敦科(1983-),男,湖北咸宁人,讲师,博士,主要研究方向:特种光纤设计、光纤传感;黄勃(1985-),男,湖北武汉人,讲师,博士,主要研究方向:需求工程、软件工程、人工智能;李晓斌(1966-),男,甘肃兰州人,教授,博士,主要研究方向:智能控制与决策。
  • 基金资助:
    国家自然科学基金资助项目(61603242);江西省经济犯罪侦查与防控技术协同创新中心开放课题(JXJZXTCX-030)。

Abstract: To overcome the randomness of RRT-Connect and slow convergence of B-RRT*(asymptotically-optimal Bidirectional Rapidly-exploring Random Tree) in path generation, an efficient path planning algorithm based on B-RRT*, abbreviated as EB-RRT*, was proposed. Firstly, an intelligent sampling function was intriduced to achieve more directional expansion of random tree, which could improve the smoothness of path and reduce the seek time. A rapidly-exploring strategy was also added in EB-RRT* by which RRT-Connect exploration mode was adopted to ensure rapidly expanding in the free space and improved asymptotically-optimal Rapidly-exploring Random Tree (RRT*) algorithm was adopted to prevent trapped in local optimum in the obstacle space. Finally, EB-RRT* algorithm was compared with Rapidly-exploring Random Tree (RRT), RRT-Connect, RRT* and B-RRT* algorithms. The simulation results show that the improved algorithm is superior to other algorithms in the efficiency and smoothness of path planning. It reduced the path planning time by 68.3% and the number of iterations by 48.6% compared with B-RRT* algorithm.

Key words: mobile robot, path planning, Rapidly-exploring Random Tree (RRT), RRT-Connect algorithm, asymptotically-optimal Bidirectional Rapidly-exploring Random Tree (B-RRT*) algorithm

摘要: 针对带启发式的快速扩展随机树(RRT-Connect)算法路径生成的随机性以及渐进最优的双向快速扩展随机树(B-RRT*)算法收敛速度的缓慢性,提出了一种基于B-RRT*改进的高效路径规划算法(EB-RRT*)。首先引入一种智能采样函数,使随机树的扩展更具方向性,从而减少寻路时间,并提高路径的平滑性;其次在B-RRT*算法的基础上,在EB-RRT*算法中加入了一种快速扩展策略,使改进后的算法在自由空间中使用RRT-Connect算法的扩展方式进行快速扩展,而在障碍物空间则使用改进的渐进最优的快速扩展随机树(RRT*)算法进行扩展,在提高扩展效率的同时避免算法陷入局部最优。将EB-RRT*算法分别与快速扩展随机树(RRT)、RRT-Connect、RRT*和B-RRT*算法进行仿真对比,仿真结果表明,改进后的算法在路径规划效率及路径平滑性方面均明显优于其他算法;且相对于B-RRT*算法,其在路径规划时间上降低了68.3%,在迭代次数上减少了48.6%。

关键词: 移动机器人, 路径规划, 快速扩展随机树, 带启发式的快速扩展随机树算法, 渐进最优的双向快速扩展随机树算法

CLC Number: