[1] GIBAJA E, VENTURA S. A tutorial on multilabel learning[J]. ACM Computing Surveys, 2015,47(3):1-38. [2] 何志芬, 杨明, 刘会东. 多标记分类和标记相关性的联合学习[J]. 软件学报, 2014, 25(9):1967-1981. (HE Z F, YANG M, LIU H D. Joint learning of multi-label classification and label correlations[J]. Journal of Software, 2014, 25(9):1967-1981.) [3] LIU J, CHANG W, WU Y, et al. Deep learning for extreme multi-label text classification[C]// Proceedings of the 40th International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM, 2017:115-124. [4] KORDMAHALLEH M M, HOMAIFAR A, DUKKA B K C. Hierarchical multi-label gene function prediction using adaptive mutation in crowding niching[C]// Proceedings of the 13th IEEE International Conference on BioInformatics and BioEngineering. Piscataway, NJ: IEEE, 2013:1-6. [5] ZHU X, LI X, ZHANG S. Block-row sparse multiview multilabel learning for image classification[J]. IEEE Transactions on Cybernetics, 2016, 46(2):450. [6] WANG Z, CHEN T, LI G, et al. Multi-label image recognition by recurrently discovering attentional regions[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2017:464-472. [7] OZONAT K M, YOUNG D E. Towards a universal marketplace over the Web: statistical multi-label classification of service provider forms with simulated annealing[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009:1295-1304. [8] HOU S, ZHOU S, CHEN L, et al. Multi-label learning with label relevance in advertising video[J]. Neurocomputing, 2016, 171(C):932-948. [9] BOUTELL M R, LUO J, SHEN X, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9):1757-1771. [10] ZHANG M, ZHOU Z. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7):2038-2048. [11] LEE J, KIM H, KIM N R, et al. An approach for multi-label classification by directed acyclic graph with label correlation maximization[J]. Information Sciences, 2016, 351(C):101-114. [12] ELISSEEFF A E, WESTON J. A kernel method for multi-labelled classification[C]// Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic. Cambridge, MA: MIT Press, 2002: 681-687. [13] HUANG G, ZHU Q, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3):489-501. [14] 王一宾, 程玉胜, 何月,等. 回归核极限学习机的多标记学习算法[J]. 模式识别与人工智能, 2018, 31(5):419-430. (WANG Y B, CHENG Y S, HE Y, et al. Multi-label learning algorithm of regression kernel extreme learning machine[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(5): 419-430.) [15] 张敏灵. 一种新型多标记懒惰学习算法[J]. 计算机研究与发展, 2012, 49(11):2271-2282. (ZHANG M L. An improved multi-label lazy learning approach[J]. Journal of Computer Research and Development, 2012, 49(11):2271-2282.) [16] YANG X, HE X. Firefly algorithm: recent advances and applications[J]. International Journal of Swarm Intelligence, 2013, 1(1):36-50. [17] HIDALGOPANIAGUA A, MIDUEL A V, JOAQUIN F, et al. Solving the multi-objective path planning problem in mobile robotics with a firefly-based approach[J]. Soft Computing, 2017, 21(4):1-16. [18] LEI Y, ZHAO D, CAI H B. Prediction of length-of-day using extreme learning machine[J]. Geodesy and Geodynamics, 2015, 6(2):151-159. [19] WANG Z, XIN J, TIAN S, et al. Distributed and weighted extreme learning machine for imbalanced big data learning[J]. Tsinghua Science and Technology, 2017, 22(2):160-173. [20] LUO F F, GUO W Z, YU Y L, et al. A multi-label classification algorithm based on kernel extreme learning machine[J]. Neurocomputing, 2017, 260: 313-320. [21] 杨明极, 马池, 王娅, 等. 一种改进K-means聚类的FCMM算法[J/OL]. 计算机应用研究, 2019, 36(7)[2018-04-12]. http://www.arocmag.com/article/02-2019-07-006.html.(YANG M J, MA C, WANG Y, et al. Algorithm named FCMM to improve K-means clustering algorithm[J/OL].Application Research of Computers, 2019, 36(7)[2018-04-12]. http://www.arocmag.com/article/02-2019-07-006.html.) [22] WANG H, WANG W, ZHOU X, et al. Firefly algorithm with neighborhood attraction[J]. Information Sciences, 2017, 382/383:374-387. [23] 程美英, 倪志伟, 朱旭辉. 萤火虫优化算法理论研究综述[J]. 计算机科学, 2015, 42(4):19-24.(CHENG M Y, NI Z W, ZHU X H. Overview on glowworm swarm optimization or firefly algorithm[J]. Computer Science, 2015, 42(4):19-24.) [24] ZHANG M L, ZHOU Z H. A Review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge & Data Engineering, 2014, 26(8):1819-1837. [25] DEMSAR J. Statistical comparisons of classifiers over multiple data sets[J]. Journal of Machine Learning Research, 2006, 7(1):1-30. [26] ZHANG M, WU L. Lift: Multi-label learning with label-specific features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(1): 107-120. [27] LIN Y, LI Y, WANG C, et al. Attribute reduction for multi-label learning with fuzzy rough set[J]. Knowledge-Based Systems, 2018,152:51-56. |