1 |
PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction: a technical overview[J].IEEE Signal Processing Magazine, 2003, 20(3):21-36. 10.1109/msp.2003.1203207
|
2 |
DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]// Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 184-199. 10.1007/978-3-319-10593-2_13
|
3 |
KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:1637-1645. 10.1109/cvpr.2016.181
|
4 |
KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1646-1654. 10.1109/cvpr.2016.182
|
5 |
ZHANG Y, TIAN Y, KONG Y, ZHONG B, et al. Residual dense network for image super-resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2472-2481. 10.1109/cvpr.2018.00262
|
6 |
ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]// Proceedings of the 2018 European Conference on Computer Vision. Cham: Springer, 2018: 286-301. 10.1007/978-3-030-01234-2_18
|
7 |
高媛,王晓晨,秦品乐,等. 基于深度可分离卷积和宽残差网络的医学影像超分辨率重建[J].计算机应用, 2019, 39(9): 2731-2737. 10.11772/j.issn.1001-9081.2019030413
|
|
GAO Y, WANG X C, QIN P L, et al. Medical image super-resolution reconstruction based on deep separable convolution and wide residual network[J]. Journal of Computer Applications, 2019, 39(9): 2731-2737. 10.11772/j.issn.1001-9081.2019030413
|
8 |
LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE, 2017:105-144. 10.1109/cvpr.2017.19
|
9 |
高媛,刘志,秦品乐,等.基于深度残差生成对抗网络的医学影像超分辨率算法[J]. 计算机应用, 2018, 38(9): 2689-2695. 10.11772/j.issn.1001-9081.2018030574
|
|
GAO Y, LIU Z, QIN P L, et al. Medical image super-resolution algorithm based on deep residual generative adversarial network[J]. Journal of Computer Applications, 2018, 38(9): 2689-2695. 10.11772/j.issn.1001-9081.2018030574
|
10 |
龚明杰. 基于级联GAN网络的医学图像超分辨率重建及图像数据集增广[D]. 杭州:浙江工业大学, 2020:21-42.
|
|
GONG M J. Medical image super-resolution reconstruction and image dataset enlargement based on cascaded GAN network [D]. Hangzhou: Zhejiang University of Technology, 2020:21-42.
|
11 |
WANG X, YU K, WU S, et al. ESRGAN: Enhanced super-resolution generative adversarial networks[C]// Proceedings of the 2018 European Conference on Computer Vision. Cham: Springer, 2018: 63-79. 10.1007/978-3-030-11021-5_5
|
12 |
JUSTIN J, ALEXANDRE A. Perceptual losses for real-time style transfer and super-resolution[C]// Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 694-711. 10.1007/978-3-319-46475-6_43
|
13 |
GOODFELLOW I, MIRZA M, XU B, et al. Generative adversarial nets[EB/OL].[2020-06-22]. . 10.1145/3422622
|
14 |
JOLICOEUR M A. The relativistic discriminator: a key element missing from standard GAN [EB/OL]. [2021-03-30]. .
|
15 |
SHANG T, DAI Q, ZHU S. Perceptual extreme super resolution network with receptive field block[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops . Piscataway: IEEE, 2020:1778-1787. 10.1109/cvprw50498.2020.00228
|
16 |
FATTAL R. Image upsampling via imposed edge statistics [J]. ACM Transactions on Graphics, 2007, 26(3): 95. 10.1145/1276377.1276496
|
17 |
SUN J, XU Z B, SHUM H Y. Gradient profile prior and its applications in image super-resolution and enhancement[J]. IEEE Transactions on Image Processing, 2011, 20(6):1529-1542. 10.1109/tip.2010.2095871
|
18 |
YAN Q, XU Y, YANG X, et al. Single image super-resolution based on gradient profile sharpness[J]. IEEE Transactions on Image Processing, 2015, 24(10):3187-3202. 10.1109/tip.2015.2414877
|
19 |
MA C, RAO Y, CHENG Y, et al. Structure-preserving super resolution with gradient guidance[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 7656-7775. 10.1109/cvpr42600.2020.00779
|
20 |
PARK J, WOO S, LEE J Y, et al. BAM: Bottleneck Attention Module[EB/OL]. [2021-03-30]. . 10.1007/s11263-019-01283-0
|
21 |
SHRIVASTAVA A, PFISTER T, TUZEL O, et al. Learning from simulated and unsupervised images through adversarial training[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2242-2251. 10.1109/cvpr.2017.241
|