Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (8): 2511-2518.DOI: 10.11772/j.issn.1001-9081.2021061079
• Advanced computing • Previous Articles Next Articles
Yu SHEN, Hecheng LI(), Lijuan CHEN
Received:
2021-06-25
Revised:
2022-02-25
Accepted:
2022-03-04
Online:
2022-03-17
Published:
2022-08-10
Contact:
Hecheng LI
About author:
SHEN Yu, born in 1995, M. S. candidate. Her research interests include optimization.Supported by:
通讯作者:
李和成
作者简介:
沈瑜(1995—),女,重庆人,硕士研究生,主要研究方向:最优化;基金资助:
CLC Number:
Yu SHEN, Hecheng LI, Lijuan CHEN. Evolutionary algorithm based on approximation technique for solving bilevel programming problems[J]. Journal of Computer Applications, 2022, 42(8): 2511-2518.
沈瑜, 李和成, 陈黎娟. 基于近似技术的双层规划进化算法[J]. 《计算机应用》唯一官方网站, 2022, 42(8): 2511-2518.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021061079
父代个体 | 近似后代个体 | 精确后代个体 |
---|---|---|
(0.00,2.00),(1.00,4.00) | (0.70,3.40) | (0.70,3.40) |
(0.10,2.20),(0.80,3.60) | (0.24,2.48) | (0.24,2.48) |
(0.40,2.80),(0.90,3.80) | (0.55,3.10) | (0.55,3.10) |
(1.20,3.90),(1.60,3.70) | (1.40,3.80) | (1.40,3.80) |
(1.80,3.60),(2.40,3.30) | (2.20,3.40) | (2.20,3.40) |
(2.00,3.50),(2.60,3.20) | (2.40,3.30) | (2.40,3.30) |
(3.00,3.00),(3.50,2.50) | (3.20,2.80) | (3.20,2.80) |
(3.60,2.40),(4.10,1.90) | (3.90,2.10) | (3.90,2.10) |
(4.50,1.50),(4.90,1.10) | (4.70,1.30) | (4.70,1.30) |
(1.75,3.63),(3.25,2.75) | (2.50,3.19) | (2.50,3.25) |
Tab. 1 Approximate and precise follower solutions
父代个体 | 近似后代个体 | 精确后代个体 |
---|---|---|
(0.00,2.00),(1.00,4.00) | (0.70,3.40) | (0.70,3.40) |
(0.10,2.20),(0.80,3.60) | (0.24,2.48) | (0.24,2.48) |
(0.40,2.80),(0.90,3.80) | (0.55,3.10) | (0.55,3.10) |
(1.20,3.90),(1.60,3.70) | (1.40,3.80) | (1.40,3.80) |
(1.80,3.60),(2.40,3.30) | (2.20,3.40) | (2.20,3.40) |
(2.00,3.50),(2.60,3.20) | (2.40,3.30) | (2.40,3.30) |
(3.00,3.00),(3.50,2.50) | (3.20,2.80) | (3.20,2.80) |
(3.60,2.40),(4.10,1.90) | (3.90,2.10) | (3.90,2.10) |
(4.50,1.50),(4.90,1.10) | (4.70,1.30) | (4.70,1.30) |
(1.75,3.63),(3.25,2.75) | (2.50,3.19) | (2.50,3.25) |
4.80 | 4.80 | 0.00 | 0.048 |
2.96 | 2.96 | 0.00 | 0.030 |
4.20 | 4.20 | 0.00 | 0.042 |
6.60 | 6.60 | 0.00 | 0.066 |
7.80 | 7.80 | 0.00 | 0.078 |
8.10 | 8.10 | 0.00 | 0.081 |
9.20 | 9.20 | 0.00 | 0.092 |
9.90 | 9.90 | 0.00 | 0.099 |
9.40 | 9.40 | 0.00 | 0.094 |
8.19 | 8.25 | 0.06 | 0.082 |
Tab. 2 Errors of objective function values
4.80 | 4.80 | 0.00 | 0.048 |
2.96 | 2.96 | 0.00 | 0.030 |
4.20 | 4.20 | 0.00 | 0.042 |
6.60 | 6.60 | 0.00 | 0.066 |
7.80 | 7.80 | 0.00 | 0.078 |
8.10 | 8.10 | 0.00 | 0.081 |
9.20 | 9.20 | 0.00 | 0.092 |
9.90 | 9.90 | 0.00 | 0.099 |
9.40 | 9.40 | 0.00 | 0.094 |
8.19 | 8.25 | 0.06 | 0.082 |
参数 | 含义 | 取值 |
---|---|---|
种群规模 种群聚类组数 | 50 5 | |
好个体数 | 5 | |
交叉概率 | 0.8 | |
变异概率 | 0.2 | |
拟合精度系数 | 1/100 | |
Max_gen | 运行的最大代数 | 20 |
Tab. 3 Related parameter and their values
参数 | 含义 | 取值 |
---|---|---|
种群规模 种群聚类组数 | 50 5 | |
好个体数 | 5 | |
交叉概率 | 0.8 | |
变异概率 | 0.2 | |
拟合精度系数 | 1/100 | |
Max_gen | 运行的最大代数 | 20 |
算法 | 上层目标函数 | 算例1 | 算例2 | 算例3 | 算例4 | 算例5 | 算例6 | 算例7 | 算例8 | 算例9 | 算例10 | 算例11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
本文算法 | 49 | -1 011.666 7 | -22 | -20 | -243.5 | 225 | 0 | -18.679 9 | -29.2 | 0 | 748.89 | |
49 | -1 011.666 7 | -22 | -20 | -243.5 | 225 | 0 | -18.679 9 | -29.2 | 0 | 748.89 | ||
49 | -1 011.666 7 | -22 | -20 | -243.5 | 225 | 0 | -18.679 9 | -29.2 | 0 | 748.89 | ||
文献[31-32,29,33]算法 | 49 | -1 011.666 7 | -22 | -20 | -243.5 | 225 | 0 | -18.678 7 | -29.2 | 0 | 741.56 |
Tab. 4 Best values, worst values and mean values of leader objective functions
算法 | 上层目标函数 | 算例1 | 算例2 | 算例3 | 算例4 | 算例5 | 算例6 | 算例7 | 算例8 | 算例9 | 算例10 | 算例11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
本文算法 | 49 | -1 011.666 7 | -22 | -20 | -243.5 | 225 | 0 | -18.679 9 | -29.2 | 0 | 748.89 | |
49 | -1 011.666 7 | -22 | -20 | -243.5 | 225 | 0 | -18.679 9 | -29.2 | 0 | 748.89 | ||
49 | -1 011.666 7 | -22 | -20 | -243.5 | 225 | 0 | -18.679 9 | -29.2 | 0 | 748.89 | ||
文献[31-32,29,33]算法 | 49 | -1 011.666 7 | -22 | -20 | -243.5 | 225 | 0 | -18.678 7 | -29.2 | 0 | 741.56 |
算法 | 算例1 | 算例2 | 算例3 | 算例4 | 算例5 | 算例6 | 算例7 | 算例8 | 算例9 | 算例10 |
---|---|---|---|---|---|---|---|---|---|---|
本文算法 | (3,4,2,0,3,0) | (0,1,0,1,0.00,75.00,21.67) | (2,2) | (8,6) | (3,8, 0.5,0) | (20,5, 10,5) | (0,30, -10,10) | (0,2,1.877 0,0.910 0) | (0.000 1,0.899 9,0,0.599 9,0.400 1) | (0,30, -10,10) |
文献[31-32,29] 算法 | (3,4,2,0,3,0) | (0,1,0,1,0.00,75.00,21.67) | (2,2) | (8,6) | (3,8, 0.5,0) | (20,5, 10,5) | (0,30, -10,10) | (0,2,1.876 8,0.907 6) | (0.000 1,0.899 9,0,0.599 9,0.400 1) | (0,30, -10,10) |
Tab. 5 Best solutions comparison of the proposed algorithm and compared algorithms
算法 | 算例1 | 算例2 | 算例3 | 算例4 | 算例5 | 算例6 | 算例7 | 算例8 | 算例9 | 算例10 |
---|---|---|---|---|---|---|---|---|---|---|
本文算法 | (3,4,2,0,3,0) | (0,1,0,1,0.00,75.00,21.67) | (2,2) | (8,6) | (3,8, 0.5,0) | (20,5, 10,5) | (0,30, -10,10) | (0,2,1.877 0,0.910 0) | (0.000 1,0.899 9,0,0.599 9,0.400 1) | (0,30, -10,10) |
文献[31-32,29] 算法 | (3,4,2,0,3,0) | (0,1,0,1,0.00,75.00,21.67) | (2,2) | (8,6) | (3,8, 0.5,0) | (20,5, 10,5) | (0,30, -10,10) | (0,2,1.876 8,0.907 6) | (0.000 1,0.899 9,0,0.599 9,0.400 1) | (0,30, -10,10) |
算法 | 算例1 | 算例2 | 算例3 | 算例4 | 算例5 | 算例6 | 算例7 | 算例8 | 算例9 | 算例10 |
---|---|---|---|---|---|---|---|---|---|---|
本文算法 | -27 | -4 673.36 | 2 | -6 | -19.5 | 100 | 100 | -1.026 8 | 3.2 | 100 |
文献[31-32,29]算法 | -27 | -4 673.36 | 2 | -6 | -19.5 | 100 | 100 | -1.015 6 | 3.2 | 100 |
Tab. 6 Follower objective function values corresponding to best solutions
算法 | 算例1 | 算例2 | 算例3 | 算例4 | 算例5 | 算例6 | 算例7 | 算例8 | 算例9 | 算例10 |
---|---|---|---|---|---|---|---|---|---|---|
本文算法 | -27 | -4 673.36 | 2 | -6 | -19.5 | 100 | 100 | -1.026 8 | 3.2 | 100 |
文献[31-32,29]算法 | -27 | -4 673.36 | 2 | -6 | -19.5 | 100 | 100 | -1.015 6 | 3.2 | 100 |
算例 | CPU/s | UACPU/s | 算例 | CPU/s | UACPU/s |
---|---|---|---|---|---|
1 | 0.4 | 0.7 | 7 | 0.5 | 0.9 |
2 | 0.3 | 0.8 | 8 | 0.5 | 0.9 |
3 | 0.5 | 0.9 | 9 | 0.4 | 0.9 |
4 | 0.3 | 0.7 | 10 | 0.6 | 1.0 |
5 | 0.5 | 0.9 | 11 | 200.0 | 310.0 |
6 | 0.4 | 0.8 |
Tab. 7 Comparison of CPU time and UACPU time of the proposed algorithm
算例 | CPU/s | UACPU/s | 算例 | CPU/s | UACPU/s |
---|---|---|---|---|---|
1 | 0.4 | 0.7 | 7 | 0.5 | 0.9 |
2 | 0.3 | 0.8 | 8 | 0.5 | 0.9 |
3 | 0.5 | 0.9 | 9 | 0.4 | 0.9 |
4 | 0.3 | 0.7 | 10 | 0.6 | 1.0 |
5 | 0.5 | 0.9 | 11 | 200.0 | 310.0 |
6 | 0.4 | 0.8 |
1 | DEMPE S. Foundations of Bilevel Programming[M]. New York: Springer, 2002 :7-10. |
2 | DEMPE S. Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints[J]. Optimization, 2003, 52(3): 333-359. 10.1080/0233193031000149894 |
3 | BARD J F. Practical Bilevel Optimization: Algorithms and Applications[M]. New York: Springer, 1998 :8-20. 10.1007/978-1-4757-2836-1_7 |
4 | WHITTAKER G, FÄRE R, GROSSKOPF S, et al. Spatial targeting of agri-environmental policy using bilevel evolutionary optimization[J]. Omega, 2017, 66(Pt A): 15-27. 10.1016/j.omega.2016.01.007 |
5 | AN B, ORDÓÑEZ F, TAMBE M, et al. A deployed quantal response-based patrol planning system for the U.S. Coast Guard[J]. Interfaces, 2013, 43(5): 400-420. 10.1287/inte.2013.0700 |
6 | NASROLAHPOUR E, KAZEMPOUR J, ZAREIPOUR H, et al. A bilevel model for participation of a storage system in energy and reserve markets[J]. IEEE Transaction on Sustainable Energy, 2018, 9(2): 582-598. 10.1109/tste.2017.2749434 |
7 | 李丽滢,付寒梅. 考虑多种运输方式的整车物流服务供应链订单分配问题[J]. 计算机应用, 2019, 39(6): 1836-1841. 10.11772/j.issn.1001-9081.2018122461 |
LI L Y, FU H M. Order allocation problem of vehicle logistics service supply chain considering multiple modes of transportation[J]. Journal of Computer Applications, 2019, 39(6): 1836-1841. 10.11772/j.issn.1001-9081.2018122461 | |
8 | 尹胜男,李引珍,张长泽. 基于客流分配的高铁票价调整策略[J]. 计算机应用, 2020, 40(1): 278-283. |
YIN S N, LI Y Z, ZHANG C Z. High-speed railway fare adjustment strategy based on passenger flow assignment[J]. Journal of Computer Applications, 2020, 40(1): 278-283. | |
9 | SINHA A, MALO P, DED K. A review on bilevel optimization: from classical to evolutionary approaches and applications[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(2): 276-295. 10.1109/tevc.2017.2712906 |
10 | JENSEN T V, KAZEMPOUR J, PINSON P. Cost-optimal ATCs in zonal electricity markets[J]. IEEE Transactions on Power Systems, 2018, 33(4): 3624-3633. 10.1109/tpwrs.2017.2786940 |
11 | DUPIN R, MICHIORRI A, KARINIOTAKIS G. Optimal dynamic line rating forecasts selection based on ampacity probabilistic forecasting and network operators’ risk aversion[J]. IEEE Transactions on Power Systems, 2019, 34(4): 2836-2845. 10.1109/tpwrs.2018.2889973 |
12 | SINHA A, SOUN T, DEB K. Using Karush-Kuhn-Tucker proximity measure for solving bilevel optimization problems[J]. Swarm and Evolutionary Computation, 2019, 44: 496-510. 10.1016/j.swevo.2018.06.004 |
13 | SINHA A, SOUN T, DEB K. Evolutionary bilevel optimisation using KKT proximity measure [C]// Proceedings of 2017 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2017: 2412-2419. 10.1109/cec.2017.7969597 |
14 | LIU S N, WANG M Z, KONG N, et al. An enhanced branch-and-bound algorithm for bilevel integer linear programming[J]. European Journal of Operational Research, 2021, 291(1): 661-679. 10.1016/j.ejor.2020.10.002 |
15 | FRANK S, MEHLITZ P, PILECKA M. Optimality conditions for the simple convex bilevel programming problem in Banach spaces[J]. Optimization, 2017, 67(2): 237-268. 10.1080/02331934.2017.1394296 |
16 | LIU J E, HONG Y F, ZHENG Y. A new variant of penalty method for weak linear bilevel programming problems[J]. Wuhan University Journal of Natural Sciences, 2018, 23(4): 328-332. 10.1007/s11859-018-1330-1 |
17 | TUO Q, LAN H Y. New exact penalty function methods with ϵ-approximation and perturbation convergence for solving nonlinear bilevel programming problems[J]. Journal of Computational Analysis and Applications, 2019, 5(1): 449-458. |
18 | AGOR J, ÖZALTIN O Y. Feature selection for classification models via bilevel optimization[J]. Computers and Operations Research, 2019, 106: 156-168. 10.1016/j.cor.2018.05.005 |
19 | LI H C. A genetic algorithm using a finite search space for solving nonlinear/linear fractional bilevel programming problems[J]. Annals of Operations Research, 2015, 235(1): 543-558. 10.1007/s10479-015-1878-5 |
20 | LI H C, WANG Z C. An evolutionary algorithm using parameter space searching for interval linear fractional bilevel programming problems[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2016, 30(4): No.1659011. 10.1142/s0218001416590114 |
21 | LI H C, FANG L. Co-evolutionary algorithm: an efficient approach for bilevel programming problems[J]. Engineering Optimization, 2014, 46(3): 361-376. 10.1080/0305215x.2013.772601 |
22 | ABO-ELNAGA Y, NASR S. Modified evolutionary algorithm and chaotic search for bilevel programming problems[J]. Symmetry, 2020, 12(5): No.767. 10.3390/sym12050767 |
23 | GOSHU N N, KASSA S M. A Systematic Sampling Evolutionary (SSE) method for stochastic bilevel programming problems[J]. Computers and Operations Research, 2020, 120: No.104942. 10.1016/j.cor.2020.104942 |
24 | 曾明华,全轲. 双层规划的改进混合布谷鸟搜索量子行为粒子群优化算法[J]. 计算机应用, 2020, 40(7): 1908-1912. |
ZENG M H, QUAN K. Improved hybrid cuckoo search-based quantum-behaved particle swarm optimization algorithm for bi-level programming[J]. Journal of Computer Applications, 2020, 40(7): 1908-1912. | |
25 | CASAS-RAMÍREZ M S, CAMACHO-VALLEJO J F. Solving the p-median bilevel problem with order through a hybrid Heuristic[J]. Applied Soft Computing, 2017, 60: 73-86. 10.1016/j.asoc.2017.06.026 |
26 | ISLAM M M, SINGH H K, RAY T, et al. An enhanced memetic algorithm for single-objective bilevel optimization problems[J]. Evolutionary Computation, 2017, 25(4): 607-642. 10.1162/evco_a_00198 |
27 | ABO-ELNAGA Y, EI-SHORBAGY M A. Multi-sine cosine algorithm for solving nonlinear bilevel programming problems[J]. International Journal of Computational Intelligence Systems, 2020, 13(1): 421-432. 10.2991/ijcis.d.200411.001 |
28 | WANG G M, MA L M. The estimation of particle swarm distribution algorithm with sensitivity analysis for solving nonlinear bilevel programming problems[J]. IEEE Access, 2020, 8: 137133-137149. 10.1109/access.2020.3011017 |
29 | SINHA A, MALO P, DEB K. Evolutionary algorithm for bilevel optimization using approximations of the lower level optimal solution mapping[J]. European Journal of Operational Research, 2017, 257(2): 395-411. 10.1016/j.ejor.2016.08.027 |
30 | LIU Y H, LI H C, CHEN H F. A genetic algorithm for solving linear bilevel programming problems [C]// Proceedings of the 14th International Conference on Computational Intelligence and Security. Piscataway: IEEE, 2018: 40-44. 10.1109/cis2018.2018.00017 |
31 | LI H, ZHANG L, JIAO Y C. Solution for integer linear bilevel programming problems using orthogonal genetic algorithm[J]. Journal of Systems Engineering and Electronics, 2014, 25(3): 443-451. 10.1109/jsee.2014.00051 |
32 | YUE D J, GAO J Y, ZENG B, al at. A projection-based reformulation and decomposition algorithm for global optimization of a class of mixed integer bilevel linear programs[J]. Journal of Global Optimization, 2019, 73(1): 27-57. 10.1007/s10898-018-0679-1 |
33 | KALASHNIKOV V, FLORES MUÑIZ J G, KALASHNYKOVA N. Bilevel optimal tolls problems with non linear costs: a heuristic solution method[M]// KOSHELEVA O, SHARY S P, XIANG G, et al. Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications, SCI 835. Cham: Springer, 2020: 481-516. |
[1] | Kaiwen ZHAO, Peng WANG, Xiangrong TONG. Two-stage search-based constrained evolutionary multitasking optimization algorithm [J]. Journal of Computer Applications, 2024, 44(5): 1415-1422. |
[2] | Ye TIAN, Jinjin CHEN, Xingyi ZHANG. Hybrid optimizer combining evolutionary computation and gradient descent for constrained multi-objective optimization [J]. Journal of Computer Applications, 2024, 44(5): 1386-1392. |
[3] | Maojiang TIAN, Mingke CHEN, Wei DU, Wenli DU. Two-stage differential grouping method for large-scale overlapping problems [J]. Journal of Computer Applications, 2024, 44(5): 1348-1354. |
[4] | Wanting ZHANG, Wenli DU, Wei DU. Multi-timescale cooperative evolutionary algorithm for large-scale crude oil scheduling [J]. Journal of Computer Applications, 2024, 44(5): 1355-1363. |
[5] | Jiawei ZHAO, Xuefeng CHEN, Liang FENG, Yaqing HOU, Zexuan ZHU, Yew‑Soon Ong. Review of evolutionary multitasking from the perspective of optimization scenarios [J]. Journal of Computer Applications, 2024, 44(5): 1325-1337. |
[6] | Jie HUANG, Ruizi WU, Junli LI. Efficient adaptive robustness optimization algorithm for complex networks [J]. Journal of Computer Applications, 2024, 44(11): 3530-3539. |
[7] | Maozu GUO, Yazhe ZHANG, Lingling ZHAO. Electric vehicle charging station siting method based on spatial semantics and individual activities [J]. Journal of Computer Applications, 2023, 43(9): 2819-2827. |
[8] | Saijuan XU, Zhenyu PEI, Jiawei LIN, Genggeng LIU. Constrained multi-objective evolutionary algorithm based on multi-stage search [J]. Journal of Computer Applications, 2023, 43(8): 2345-2351. |
[9] | Erchao LI, Yanli CHENG. Dynamic multi-objective optimization algorithm based on weight vector clustering [J]. Journal of Computer Applications, 2023, 43(7): 2226-2236. |
[10] | Zhihui GAO, Meng HAN, Shujuan LIU, Ang LI, Dongliang MU. Survey of high utility itemset mining methods based on intelligent optimization algorithm [J]. Journal of Computer Applications, 2023, 43(6): 1676-1686. |
[11] | Bin WANG, Tian XIANG, Yidong LYU, Xiaofan WANG. Adaptive multi-scale feature channel grouping optimization algorithm based on NSGA‑Ⅱ [J]. Journal of Computer Applications, 2023, 43(5): 1401-1408. |
[12] | Erchao LI, Shenghui ZHANG. Dynamic multi-objective optimization algorithm based on adaptive prediction of new evaluation index [J]. Journal of Computer Applications, 2023, 43(10): 3178-3187. |
[13] | Kuineng CHEN, Xiaofang YUAN. Multi-objective hybrid evolutionary algorithm for solving open-shop scheduling problem with controllable processing time [J]. Journal of Computer Applications, 2022, 42(8): 2617-2627. |
[14] | Wei LI, Yaochi FAN, Qiaoyong JIANG, Lei WANG, Qingzheng XU. Variable convolutional autoencoder method based on teaching-learning-based optimization for medical image classification [J]. Journal of Computer Applications, 2022, 42(2): 592-598. |
[15] | Feifan SHI, Xuhua SHI. Adaptive reference vector based constrained multi-objective evolutionary algorithm [J]. Journal of Computer Applications, 2022, 42(2): 542-549. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||