Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (12): 3654-3661.DOI: 10.11772/j.issn.1001-9081.2022121908
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Keke WANG, Yu ZHU(), Xiaoying WANG, Jianqiang HUANG, Tengfei CAO
Received:
2022-12-30
Revised:
2023-03-23
Accepted:
2023-03-28
Online:
2023-04-07
Published:
2023-12-10
Contact:
Yu ZHU
About author:
WANG Keke, born in 1999, M. S. candidate. Her research interest is network representation learning.Supported by:
通讯作者:
朱宇
作者简介:
王可可(1999—),女,河南濮阳人,硕士研究生,主要研究方向:网络表示学习基金资助:
CLC Number:
Keke WANG, Yu ZHU, Xiaoying WANG, Jianqiang HUANG, Tengfei CAO. Heterogeneous hypernetwork representation learning method with hyperedge constraint[J]. Journal of Computer Applications, 2023, 43(12): 3654-3661.
王可可, 朱宇, 王晓英, 黄建强, 曹腾飞. 超边约束的异质超网络表示学习方法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3654-3661.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022121908
数据集 | 节点类型(节点数) | 边数 | ||
---|---|---|---|---|
drug | 用户(4) | 药物(132) | 反应(221) | 1 195 |
GPS | 用户(5) | 位置(70) | 活动(146) | 1 436 |
MovieLens | 用户(457) | 电影(1 688) | 标签(1 530) | 5 965 |
Tab. 1 Dataset details
数据集 | 节点类型(节点数) | 边数 | ||
---|---|---|---|---|
drug | 用户(4) | 药物(132) | 反应(221) | 1 195 |
GPS | 用户(5) | 位置(70) | 活动(146) | 1 436 |
MovieLens | 用户(457) | 电影(1 688) | 标签(1 530) | 5 965 |
操作 | 符号 | 定义 |
---|---|---|
Weighted-L1 | ||
Weighted-L2 |
Tab. 2 Binary operator
操作 | 符号 | 定义 |
---|---|---|
Weighted-L1 | ||
Weighted-L2 |
二元算子 操作 | 方法 | drug数据集 | GPS数据集 | MovieLens数据集 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2-截图 | 关联图 | 2-截图+ 关联图 | 2-截图 | 关联图 | 2-截图+ 关联图 | 2-截图 | 关联图 | 2-截图+ 关联图 | ||
Weighted-L1 | DeepWalk | 79.12 | 88.32 | 88.91 | 85.40 | 87.21 | 90.58 | 69.20 | 89.06 | 90.54 |
node2vec | 78.54 | 88.18 | 88.61 | 82.99 | 88.14 | 90.92 | 71.36 | 88.76 | 90.33 | |
metapath2vec | 84.35 | 89.26 | 92.52 | 89.18 | 89.69 | 90.37 | 80.32 | 84.25 | 90.48 | |
CoarSAS2hvec | 86.02 | 88.14 | 91.53 | 88.14 | 91.92 | 94.85 | 93.60 | 94.77 | 96.34 | |
HRTC | 88.35 | 91.58 | 93.22 | 90.81 | 92.67 | 93.36 | 92.51 | 94.05 | 96.31 | |
HRHC | 87.92 | 90.46 | 93.01 | 87.46 | 92.67 | 92.78 | 93.14 | |||
Hyper2vec | 92.37 | 92.78 | 96.18 | |||||||
HPSG | 91.97 | 93.20 | 98.08 | |||||||
HPHG | 94.33 | 91.64 | ||||||||
Event2vec | 95.28 | 96.05 | 93.45 | |||||||
Weighted-L2 | DeepWalk | 77.08 | 89.05 | 87.45 | 85.22 | 88.69 | 90.06 | 68.77 | 88.86 | 90.63 |
node2vec | 77.96 | 88.47 | 88.48 | 83.85 | 86.43 | 91.12 | 70.37 | 89.27 | 91.26 | |
metapath2vec | 84.57 | 89.44 | 91.03 | 87.46 | 89.18 | 90.55 | 78.52 | 85.22 | 89.23 | |
CoarSAS2hvec | 87.08 | 88.77 | 92.80 | 87.80 | 92.61 | 92.07 | 94.14 | 95.31 | ||
HRTC | 87.08 | 91.84 | 94.27 | 90.47 | 92.53 | 93.39 | 91.18 | 93.47 | 95.54 | |
HRHC | 88.98 | 90.04 | 94.86 | 87.80 | 93.12 | 94.33 | 92.12 | 92.47 | ||
Hyper2vec | 93.43 | 91.92 | 95.82 | |||||||
HPSG | 92.14 | 93.12 | 97.80 | |||||||
HPHG | 95.83 | 93.47 | 91.38 | |||||||
Event2vec | 94.33 | 91.91 |
Tab. 3 AUC comparison of link prediction
二元算子 操作 | 方法 | drug数据集 | GPS数据集 | MovieLens数据集 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2-截图 | 关联图 | 2-截图+ 关联图 | 2-截图 | 关联图 | 2-截图+ 关联图 | 2-截图 | 关联图 | 2-截图+ 关联图 | ||
Weighted-L1 | DeepWalk | 79.12 | 88.32 | 88.91 | 85.40 | 87.21 | 90.58 | 69.20 | 89.06 | 90.54 |
node2vec | 78.54 | 88.18 | 88.61 | 82.99 | 88.14 | 90.92 | 71.36 | 88.76 | 90.33 | |
metapath2vec | 84.35 | 89.26 | 92.52 | 89.18 | 89.69 | 90.37 | 80.32 | 84.25 | 90.48 | |
CoarSAS2hvec | 86.02 | 88.14 | 91.53 | 88.14 | 91.92 | 94.85 | 93.60 | 94.77 | 96.34 | |
HRTC | 88.35 | 91.58 | 93.22 | 90.81 | 92.67 | 93.36 | 92.51 | 94.05 | 96.31 | |
HRHC | 87.92 | 90.46 | 93.01 | 87.46 | 92.67 | 92.78 | 93.14 | |||
Hyper2vec | 92.37 | 92.78 | 96.18 | |||||||
HPSG | 91.97 | 93.20 | 98.08 | |||||||
HPHG | 94.33 | 91.64 | ||||||||
Event2vec | 95.28 | 96.05 | 93.45 | |||||||
Weighted-L2 | DeepWalk | 77.08 | 89.05 | 87.45 | 85.22 | 88.69 | 90.06 | 68.77 | 88.86 | 90.63 |
node2vec | 77.96 | 88.47 | 88.48 | 83.85 | 86.43 | 91.12 | 70.37 | 89.27 | 91.26 | |
metapath2vec | 84.57 | 89.44 | 91.03 | 87.46 | 89.18 | 90.55 | 78.52 | 85.22 | 89.23 | |
CoarSAS2hvec | 87.08 | 88.77 | 92.80 | 87.80 | 92.61 | 92.07 | 94.14 | 95.31 | ||
HRTC | 87.08 | 91.84 | 94.27 | 90.47 | 92.53 | 93.39 | 91.18 | 93.47 | 95.54 | |
HRHC | 88.98 | 90.04 | 94.86 | 87.80 | 93.12 | 94.33 | 92.12 | 92.47 | ||
Hyper2vec | 93.43 | 91.92 | 95.82 | |||||||
HPSG | 92.14 | 93.12 | 97.80 | |||||||
HPHG | 95.83 | 93.47 | 91.38 | |||||||
Event2vec | 94.33 | 91.91 |
1 | ZHU Y, YE Z L, ZHAO H X, et al. Text-enhanced network representation learning [J]. Frontiers of Computer Science, 2020, 14(6): 146322. 10.1007/s11704-020-8440-6 |
2 | SHEIKH N, KEFATO Z T, MONTRESOR A. Semi-supervised heterogeneous information network embedding for node classification using 1D-CNN [C]// Proceedings of the 2018 Fifth International Conference on Social Networks Analysis, Management and Security. Piscataway: IEEE, 2018:177-181. 10.1109/snams.2018.8554840 |
3 | 刘昱阳,李龙杰,单娜,等.融合聚集系数的链接预测方法 [J]. 计算机应用, 2020, 40(1): 28-35. 10.11772/j.issn.1001-9081.2019061008 |
LIU Y Y, LI L J, SHAN N, et al. Link prediction method fusing clustering coefficients [J]. Journal of Computer Applications, 2020, 40(1): 28-35. 10.11772/j.issn.1001-9081.2019061008 | |
4 | 陈吉成,陈鸿昶.基于张量建模和进化K均值聚类的社区检测方法 [J]. 计算机应用, 2021, 41(11): 3120-3126. |
CHEN J C, CHEN H C. Community detection method based on tensor modeling and evolutionary K-means clustering [J]. Journal of Computer Applications, 2021, 41(11): 3120-3126. | |
5 | 胡秉德, 王新根, 王新宇, 等. 超图学习综述: 算法分类与应用分析[J]. 软件学报, 2022, 33(2): 498-523. |
HU B D, WANG X G, WANG X Y, et al. Survey on hypergraph learning: algorithm classification and application analysis [J]. Journal of Software, 2022, 33(2):498-523. | |
6 | AGARWAL S, BRANSON K, BELONGIE S. Higher order learning with graph [C]// Proceedings of the 23rd International Conference on Machine Learning. New York: ACM, 2006: 17-24. 10.1145/1143844.1143847 |
7 | FENG Y, YOU H, ZHANG Z, et al. Hypergraph neural networks [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence and 31st Innovative Applications of Artificial Intelligence Conference and 9th AAAI Symposium on Educational Advances in Aritificial Intelligence. Palo Alto: AAAI Press, 2019: 3558-3565. 10.1609/aaai.v33i01.33013558 |
8 | HUANG J, CHEN C, YE F, et al. Hyper2vec: biased random walk for hyper-network embedding [C]// Proceedings of the 2019 International Conference on Database Systems for Advanced Applications. Cham: Springer, 2019: 273-277. 10.1007/978-3-030-18590-9_27 |
9 | TU K, CUI P, WANG F, et al. Structural deep embedding for hyper-networks [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 426-433. 10.1609/aaai.v32i1.11266 |
10 | ZHANG R, ZOU Y, MA J. Hyper-SAGNN: a self-attention based graph neural network for hypergraphs [EB/OL]. [2019-11-06]. . |
11 | JIANG J, WEI Y, FENG Y, et al. Dynamic hypergraph neural networks [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 2635-2641. 10.24963/ijcai.2019/366 |
12 | MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Palo Alto: AAAI Press, 2013,2: 3111-3119. |
13 | 刘贞国,朱宇,赵海兴,等.基于平移约束的异质超网络表示学习 [J]. 中文信息学报, 2022, 36(12): 74-84. 10.3969/j.issn.1003-0077.2022.12.008 |
LIU Z G, ZHU Y, ZHAO H X, et al. Heterogeneous hypernetwork representation learning with the translation constraint [J]. Journal of Chinese Information Processing, 2022, 36(12): 74-84. 10.3969/j.issn.1003-0077.2022.12.008 | |
14 | HONG S, ZHOU Z, ZIO E, et al. An adaptive method for health trend prediction of rotating bearings [J]. Digital Signal Processing, 2014, 35: 117-123. 10.1016/j.dsp.2014.08.006 |
15 | MATHIOUDALKIS M, KOUDAS N. TwitterMonitor: trend detection over the twitter stream [C]// Proceedings of the 29th ACM SIGMOD International Conference on Management of Data. New York: ACM, 2010: 1155-1158. 10.1145/1807167.1807306 |
16 | JANNACH D, ZANKER M, FELFERNIG A, et al. Recommender Systems: An Introduction [M]. New York: Cambridge University Press, 2010:1-10. 10.1017/cbo9780511763113 |
17 | BRETTO A. Hypergraph Theory: An Introduction [M]. Cham: Springer, 2013: 43-49. 10.1007/978-3-319-00080-0_3 |
18 | 刘贞国,朱宇,刘连照,等.基于转化策略的异质超网络表示学习[J].计算机应用研究, 2022, 39(11): 3333-3339. |
LIU Z G, ZHU Y, LIU L Z, et al. Heterogeneous hypernetwork representation learning with transformation strategy [J]. Application Research of Computers, 2022, 39(11): 3333-3339. | |
19 | BORDES A, USUNIER N, GARCIA-DURÁN A. Translating embeddings for modeling multi-relational data [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Cham: Springer, 2013,2: 2787-2795. |
20 | ZHENG V W, CAO B, ZHENG Y, et al. Collaborative filtering meets mobile recommendation: a user-centered approach [C]// Proceedings of the 24th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2010: 236-241. 10.1609/aaai.v24i1.7577 |
21 | HARPER F M, KONSTAN J A. The MovieLens datasets: history and context [J]. ACM Transactions on Internet and Information Systems, 2016, 5(4): 19. 10.1145/2827872 |
22 | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations [C] // Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. 10.1145/2623330.2623732 |
23 | GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864. 10.1145/2939672.2939754 |
24 | DONG Y, CHAWLA N V, SWAMI A. metapath2vec: scalable representation learning for heterogeneous networks [C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 135-144. 10.1145/3097983.3098036 |
25 | ZHAN L, JIA T. CoarSAS2hvec: heterogeneous information network embedding with balanced network sampling [J]. Entropy, 2022, 24(2): 276. 10.3390/e24020276 |
26 | HUANG J, LIU X, SONG Y. Hyper-path-based representation learning for hyper-networks [C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 449-458. 10.1145/3357384.3357871 |
27 | FU G, YUAN B, DUAN Q, et al. Representation learning for heterogeneous information networks via embedding events [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Cham: Springer, 2019: 327-339. 10.1007/978-3-030-36708-4_27 |
28 | 杜航原,郝思聪,王文剑.结合图自编码器与聚类的半监督表示学习方法 [J]. 计算机应用, 2022, 42(9): 2643-2651. |
DU H Y, HAO S C, WANG W J. Semi-supervised representation learning method combining graph auto-encoder and clustering [J]. Journal of Computer Applications, 2022, 42(9): 2643-2651. |
[1] | Yao LIU, Yumeng LI, Miaomiao SONG. Cognitive graph based on business process [J]. Journal of Computer Applications, 2024, 44(6): 1699-1705. |
[2] | Kuo TIAN, Yinghan WU, Feng HU. Identification method of influence nodes in multilayer hypernetwork based on evidence theory [J]. Journal of Computer Applications, 2024, 44(1): 182-189. |
[3] | Jinghong WANG, Zhixia ZHOU, Hui WANG, Haokang LI. Attribute network representation learning with dual auto-encoder [J]. Journal of Computer Applications, 2023, 43(8): 2338-2344. |
[4] | Kun FU, Yuhan HAO, Minglei SUN, Yinghua LIU. Network representation learning based on autoencoder with optimized graph structure [J]. Journal of Computer Applications, 2023, 43(10): 3054-3061. |
[5] | YUAN Lining, LIU Zhao. Graph representation learning by autoencoder with one-shot aggregation [J]. Journal of Computer Applications, 2023, 43(1): 8-14. |
[6] | Yuyu MENG, Jing GUO. Link prediction algorithm based on information entropy improved PCA model [J]. Journal of Computer Applications, 2022, 42(9): 2823-2829. |
[7] | Hangyuan DU, Sicong HAO, Wenjian WANG. Semi-supervised representation learning method combining graph auto-encoder and clustering [J]. Journal of Computer Applications, 2022, 42(9): 2643-2651. |
[8] | Xiaopeng YU, Ruhan HE, Jin HUANG, Junjie ZHANG, Xinrong HU. Knowledge graph embedding model based on improved Inception structure [J]. Journal of Computer Applications, 2022, 42(4): 1065-1071. |
[9] | Jun HU, Zhengkang XU, Li LIU, Fujin ZHONG. Network embedding method based on multi-granularity community information [J]. Journal of Computer Applications, 2022, 42(3): 663-670. |
[10] | Kun FU, Jinhui GAO, Xiaomeng ZHAO, Jianing LI. Topology optimization based graph convolutional network combining with global structural information [J]. Journal of Computer Applications, 2022, 42(2): 357-364. |
[11] | Guangfu CHEN, Haibo WANG, Yanping LIAN. Link prediction in directed network based on high-order self-included collaborative filtering [J]. Journal of Computer Applications, 2022, 42(10): 3060-3068. |
[12] | CAI Biao, LI Ruicen, WU Yuanyuan. Impact and enhancement of similarity features on link prediction [J]. Journal of Computer Applications, 2021, 41(9): 2569-2577. |
[13] | WANG Gaojie, YE Zhonglin, ZHAO Haixing, ZHU Yu, MENG Lei. Analysis of hypernetwork characteristics in Tang poems and Song lyrics [J]. Journal of Computer Applications, 2021, 41(8): 2432-2439. |
[14] | ZHANG Yuanjun, ZHANG Xihuang. Dynamic network representation learning model based on graph convolutional network and long short-term memory network [J]. Journal of Computer Applications, 2021, 41(7): 1857-1864. |
[15] | FAN Wei, WANG Huimin, XING Yan. Auto-encoder based multi-view attributed network representation learning model [J]. Journal of Computer Applications, 2021, 41(4): 1064-1070. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||