Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (1): 115-126.DOI: 10.11772/j.issn.1001-9081.2023121724
• Data science and technology • Previous Articles Next Articles
Zhuoyue OU, Xiuqin DENG(), Lei CHEN
Received:
2023-12-13
Revised:
2024-03-25
Accepted:
2024-03-27
Online:
2024-04-28
Published:
2025-01-10
Contact:
Xiuqin DENG
About author:
OU Zhuoyue, born in 2000, M. S. candidate. His research interests include machine learning, data mining.Supported by:
通讯作者:
邓秀勤
作者简介:
区卓越(2000—),男,广东广州人,硕士研究生,主要研究方向:机器学习、数据挖掘;基金资助:
CLC Number:
Zhuoyue OU, Xiuqin DENG, Lei CHEN. Self-adaptive multi-view clustering algorithm with complementarity based on weighted anchors[J]. Journal of Computer Applications, 2025, 45(1): 115-126.
区卓越, 邓秀勤, 陈磊. 基于加权锚点的自适应多视图互补聚类算法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 115-126.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023121724
数据集 | 样本数 | 视图数 | 簇类数 |
---|---|---|---|
BDGP | 2 500 | 3 | 5 |
Wiki | 2 866 | 2 | 10 |
CiteSeer | 3 312 | 2 | 6 |
CCV | 6 773 | 3 | 20 |
Caltech101-all | 9 144 | 5 | 102 |
SUNRGBD | 10 335 | 2 | 45 |
Tab. 1 Datasets used in experiments
数据集 | 样本数 | 视图数 | 簇类数 |
---|---|---|---|
BDGP | 2 500 | 3 | 5 |
Wiki | 2 866 | 2 | 10 |
CiteSeer | 3 312 | 2 | 6 |
CCV | 6 773 | 3 | 20 |
Caltech101-all | 9 144 | 5 | 102 |
SUNRGBD | 10 335 | 2 | 45 |
数据集 | 算法 | NMI | ARI | SE | SP | PR | MCC |
---|---|---|---|---|---|---|---|
BDGP | SC-Best | 0.216 6 | 0.190 6 | 0.449 6 | 0.857 8 | 0.489 6 | 0.337 5 |
SC-Concat | 0.231 2 | 0.169 1 | 0.455 2 | ||||
GMC | — | — | — | — | — | — | |
LMVSC | 0.001 6 | 0.000 0 | 0.200 4 | 0.800 1 | 0.240 1 | 0.018 0 | |
FPMVS-CAG | 0.054 2 | 0.058 9 | 0.111 6 | 0.777 9 | 0.220 6 | 0.138 6 | |
OMSC | 0.318 5 | 0.246 1 | 0.286 8 | 0.821 7 | 0.287 6 | 0.108 6 | |
COMVSC | 0.269 0 | 0.215 7 | 0.829 1 | 0.315 2 | 0.209 1 | ||
MVC-WA | 0.250 2 | 0.204 8 | 0.222 0 | 0.805 5 | 0.352 6 | 0.204 3 | |
FEMV | 0.264 5 | 0.200 6 | 0.430 8 | 0.857 7 | 0.349 7 | 0.311 3 | |
SMCWA | 0.532 4 | 0.883 1 | 0.603 5 | 0.478 7 | |||
Wiki | SC-Best | 0.483 7 | 0.421 1 | 0.520 2 | 0.949 6 | 0.528 0 | 0.486 5 |
SC-Concat | 0.505 7 | 0.439 5 | 0.544 5 | 0.540 2 | 0.492 3 | ||
GMC | 0.078 1 | 0.002 4 | 0.135 7 | 0.904 6 | 0.458 2 | 0.120 5 | |
LMVSC | 0.440 6 | 0.268 1 | 0.917 6 | 0.247 1 | 0.251 7 | ||
FPMVS-CAG | 0.168 5 | 0.110 0 | 0.189 3 | 0.912 0 | 0.205 8 | 0.148 8 | |
OMSC | 0.202 0 | 0.138 0 | 0.093 5 | 0.899 3 | 0.229 8 | 0.066 1 | |
COMVSC | 0.402 0 | 0.338 6 | 0.079 3 | 0.897 7 | 0.141 6 | 0.115 3 | |
MVC-WA | 0.495 0 | 0.942 3 | |||||
FEMV | 0.215 0 | 0.143 7 | 0.309 3 | 0.925 2 | 0.328 1 | 0.238 8 | |
SMCWA | 0.553 5 | 0.475 1 | 0.597 2 | 0.958 0 | 0.599 9 | 0.546 9 | |
CiteSeer | SC-Best | 0.208 8 | 0.197 2 | 0.321 0 | 0.876 6 | 0.538 8 | 0.328 7 |
SC-Concat | 0.207 3 | 0.170 5 | 0.375 0 | 0.883 5 | 0.440 2 | 0.285 5 | |
GMC | 0.013 9 | 0.001 0 | 0.174 1 | 0.834 5 | 0.702 2 | 0.072 5 | |
LMVSC | 0.216 5 | 0.179 5 | 0.226 7 | 0.847 5 | 0.235 4 | 0.148 5 | |
FPMVS-CAG | 0.185 8 | 0.181 7 | 0.333 3 | 0.871 7 | 0.315 9 | 0.225 2 | |
OMSC | 0.174 4 | 0.159 5 | 0.207 7 | 0.843 1 | 0.312 3 | 0.158 1 | |
COMVSC | 0.016 6 | 0.010 5 | 0.184 5 | 0.834 3 | 0.204 9 | 0.057 1 | |
MVC-WA | 0.227 3 | 0.432 5 | 0.893 4 | 0.440 7 | 0.325 5 | ||
FEMV | 0.293 6 | 0.214 7 | |||||
SMCWA | 0.251 9 | 0.531 1 | 0.912 3 | 0.569 4 | 0.459 8 | ||
CCV | SC-Best | 0.135 4 | 0.068 7 | 0.160 8 | 0.176 5 | 0.144 7 | |
SC-Concat | 0.146 6 | 0.048 6 | 0.155 9 | 0.180 6 | 0.116 5 | ||
GMC | — | — | — | — | — | — | |
LMVSC | 0.161 6 | 0.034 5 | 0.950 8 | 0.158 4 | |||
FPMVS-CAG | 0.092 3 | 0.953 1 | 0.128 6 | 0.065 8 | |||
OMSC | 0.185 5 | 0.083 7 | 0.057 2 | 0.950 6 | 0.133 0 | 0.040 5 | |
COMVSC | 0.042 0 | 0.022 6 | 0.039 1 | 0.949 9 | 0.058 2 | 0.017 1 | |
MVC-WA | 0.162 9 | 0.058 4 | 0.114 8 | 0.953 7 | 0.127 5 | ||
FEMV | — | — | — | — | — | — | |
SMCWA | 0.172 7 | 0.067 8 | 0.189 0 | 0.957 5 | 0.218 0 | 0.150 2 | |
Caltech101-all | SC-Best | 0.367 1 | 0.169 5 | ||||
SC-Concat | — | — | — | — | — | — | |
GMC | — | — | — | — | — | — | |
LMVSC | 0.164 6 | 0.016 1 | 0.990 2 | 0.124 5 | 0.011 3 | ||
FPMVS-CAG | 0.361 4 | 0.024 3 | 0.990 7 | 0.173 6 | 0.018 3 | ||
OMSC | 0.366 7 | 0.152 4 | 0.009 5 | 0.990 2 | 0.119 6 | 0.006 1 | |
COMVSC | — | — | — | — | — | — | |
MVC-WA | 0.327 4 | 0.096 2 | 0.132 0 | 0.991 5 | 0.155 2 | 0.125 7 | |
FEMV | — | — | — | — | — | — | |
SMCWA | 0.445 7 | 0.188 5 | 0.200 4 | 0.992 4 | 0.256 0 | 0.232 7 | |
SUNRGBD | SC-Best | 0.167 8 | 0.076 8 | 0.173 7 | 0.980 2 | 0.164 7 | 0.122 2 |
SC-Concat | 0.242 9 | 0.101 4 | 0.982 1 | ||||
GMC | 0.072 8 | 0.000 8 | 0.055 7 | 0.978 4 | 0.370 6 | 0.090 0 | |
LMVSC | 0.219 8 | 0.071 7 | 0.036 4 | 0.977 9 | 0.027 5 | 0.020 7 | |
FPMVS-CAG | 0.242 1 | 0.044 2 | 0.978 6 | 0.166 7 | 0.026 8 | ||
OMSC | 0.244 3 | 0.096 2 | 0.017 8 | 0.977 6 | 0.155 6 | 0.013 3 | |
COMVSC | — | — | — | — | — | — | |
MVC-WA | 0.174 1 | 0.056 1 | 0.163 7 | 0.980 7 | 0.146 9 | 0.101 8 | |
FEMV | — | — | — | — | — | — | |
SMCWA | 0.099 5 | 0.187 2 | 0.184 9 | 0.148 8 |
Tab. 2 Comparison of running results of different algorithms
数据集 | 算法 | NMI | ARI | SE | SP | PR | MCC |
---|---|---|---|---|---|---|---|
BDGP | SC-Best | 0.216 6 | 0.190 6 | 0.449 6 | 0.857 8 | 0.489 6 | 0.337 5 |
SC-Concat | 0.231 2 | 0.169 1 | 0.455 2 | ||||
GMC | — | — | — | — | — | — | |
LMVSC | 0.001 6 | 0.000 0 | 0.200 4 | 0.800 1 | 0.240 1 | 0.018 0 | |
FPMVS-CAG | 0.054 2 | 0.058 9 | 0.111 6 | 0.777 9 | 0.220 6 | 0.138 6 | |
OMSC | 0.318 5 | 0.246 1 | 0.286 8 | 0.821 7 | 0.287 6 | 0.108 6 | |
COMVSC | 0.269 0 | 0.215 7 | 0.829 1 | 0.315 2 | 0.209 1 | ||
MVC-WA | 0.250 2 | 0.204 8 | 0.222 0 | 0.805 5 | 0.352 6 | 0.204 3 | |
FEMV | 0.264 5 | 0.200 6 | 0.430 8 | 0.857 7 | 0.349 7 | 0.311 3 | |
SMCWA | 0.532 4 | 0.883 1 | 0.603 5 | 0.478 7 | |||
Wiki | SC-Best | 0.483 7 | 0.421 1 | 0.520 2 | 0.949 6 | 0.528 0 | 0.486 5 |
SC-Concat | 0.505 7 | 0.439 5 | 0.544 5 | 0.540 2 | 0.492 3 | ||
GMC | 0.078 1 | 0.002 4 | 0.135 7 | 0.904 6 | 0.458 2 | 0.120 5 | |
LMVSC | 0.440 6 | 0.268 1 | 0.917 6 | 0.247 1 | 0.251 7 | ||
FPMVS-CAG | 0.168 5 | 0.110 0 | 0.189 3 | 0.912 0 | 0.205 8 | 0.148 8 | |
OMSC | 0.202 0 | 0.138 0 | 0.093 5 | 0.899 3 | 0.229 8 | 0.066 1 | |
COMVSC | 0.402 0 | 0.338 6 | 0.079 3 | 0.897 7 | 0.141 6 | 0.115 3 | |
MVC-WA | 0.495 0 | 0.942 3 | |||||
FEMV | 0.215 0 | 0.143 7 | 0.309 3 | 0.925 2 | 0.328 1 | 0.238 8 | |
SMCWA | 0.553 5 | 0.475 1 | 0.597 2 | 0.958 0 | 0.599 9 | 0.546 9 | |
CiteSeer | SC-Best | 0.208 8 | 0.197 2 | 0.321 0 | 0.876 6 | 0.538 8 | 0.328 7 |
SC-Concat | 0.207 3 | 0.170 5 | 0.375 0 | 0.883 5 | 0.440 2 | 0.285 5 | |
GMC | 0.013 9 | 0.001 0 | 0.174 1 | 0.834 5 | 0.702 2 | 0.072 5 | |
LMVSC | 0.216 5 | 0.179 5 | 0.226 7 | 0.847 5 | 0.235 4 | 0.148 5 | |
FPMVS-CAG | 0.185 8 | 0.181 7 | 0.333 3 | 0.871 7 | 0.315 9 | 0.225 2 | |
OMSC | 0.174 4 | 0.159 5 | 0.207 7 | 0.843 1 | 0.312 3 | 0.158 1 | |
COMVSC | 0.016 6 | 0.010 5 | 0.184 5 | 0.834 3 | 0.204 9 | 0.057 1 | |
MVC-WA | 0.227 3 | 0.432 5 | 0.893 4 | 0.440 7 | 0.325 5 | ||
FEMV | 0.293 6 | 0.214 7 | |||||
SMCWA | 0.251 9 | 0.531 1 | 0.912 3 | 0.569 4 | 0.459 8 | ||
CCV | SC-Best | 0.135 4 | 0.068 7 | 0.160 8 | 0.176 5 | 0.144 7 | |
SC-Concat | 0.146 6 | 0.048 6 | 0.155 9 | 0.180 6 | 0.116 5 | ||
GMC | — | — | — | — | — | — | |
LMVSC | 0.161 6 | 0.034 5 | 0.950 8 | 0.158 4 | |||
FPMVS-CAG | 0.092 3 | 0.953 1 | 0.128 6 | 0.065 8 | |||
OMSC | 0.185 5 | 0.083 7 | 0.057 2 | 0.950 6 | 0.133 0 | 0.040 5 | |
COMVSC | 0.042 0 | 0.022 6 | 0.039 1 | 0.949 9 | 0.058 2 | 0.017 1 | |
MVC-WA | 0.162 9 | 0.058 4 | 0.114 8 | 0.953 7 | 0.127 5 | ||
FEMV | — | — | — | — | — | — | |
SMCWA | 0.172 7 | 0.067 8 | 0.189 0 | 0.957 5 | 0.218 0 | 0.150 2 | |
Caltech101-all | SC-Best | 0.367 1 | 0.169 5 | ||||
SC-Concat | — | — | — | — | — | — | |
GMC | — | — | — | — | — | — | |
LMVSC | 0.164 6 | 0.016 1 | 0.990 2 | 0.124 5 | 0.011 3 | ||
FPMVS-CAG | 0.361 4 | 0.024 3 | 0.990 7 | 0.173 6 | 0.018 3 | ||
OMSC | 0.366 7 | 0.152 4 | 0.009 5 | 0.990 2 | 0.119 6 | 0.006 1 | |
COMVSC | — | — | — | — | — | — | |
MVC-WA | 0.327 4 | 0.096 2 | 0.132 0 | 0.991 5 | 0.155 2 | 0.125 7 | |
FEMV | — | — | — | — | — | — | |
SMCWA | 0.445 7 | 0.188 5 | 0.200 4 | 0.992 4 | 0.256 0 | 0.232 7 | |
SUNRGBD | SC-Best | 0.167 8 | 0.076 8 | 0.173 7 | 0.980 2 | 0.164 7 | 0.122 2 |
SC-Concat | 0.242 9 | 0.101 4 | 0.982 1 | ||||
GMC | 0.072 8 | 0.000 8 | 0.055 7 | 0.978 4 | 0.370 6 | 0.090 0 | |
LMVSC | 0.219 8 | 0.071 7 | 0.036 4 | 0.977 9 | 0.027 5 | 0.020 7 | |
FPMVS-CAG | 0.242 1 | 0.044 2 | 0.978 6 | 0.166 7 | 0.026 8 | ||
OMSC | 0.244 3 | 0.096 2 | 0.017 8 | 0.977 6 | 0.155 6 | 0.013 3 | |
COMVSC | — | — | — | — | — | — | |
MVC-WA | 0.174 1 | 0.056 1 | 0.163 7 | 0.980 7 | 0.146 9 | 0.101 8 | |
FEMV | — | — | — | — | — | — | |
SMCWA | 0.099 5 | 0.187 2 | 0.184 9 | 0.148 8 |
数据集 | 算法 | NMI | ARI | SE | SP | PR | MCC |
---|---|---|---|---|---|---|---|
BDGP | SMCWA | 0.292 3 | 0.532 4 | 0.883 1 | 0.603 5 | 0.478 7 | |
de-Ⅰ | 0.133 0 | 0.092 8 | 0.349 2 | 0.837 3 | 0.382 1 | 0.232 3 | |
de-Ⅱ | 0.245 3 | 0.540 0 | 0.409 1 | ||||
de-Ⅲ | 0.256 9 | 0.187 4 | 0.513 2 | 0.878 3 | |||
Wiki | SMCWA | 0.553 5 | 0.475 1 | 0.597 2 | 0.958 0 | 0.599 9 | 0.546 9 |
de-Ⅰ | 0.488 8 | 0.424 0 | 0.541 3 | 0.952 0 | 0.530 5 | 0.484 8 | |
de-Ⅱ | 0.494 2 | 0.354 2 | 0.526 8 | 0.949 3 | 0.546 5 | 0.493 5 | |
de-Ⅲ | |||||||
CiteSeer | SMCWA | 0.292 1 | 0.251 9 | 0.531 1 | 0.912 3 | 0.569 4 | 0.459 8 |
de-Ⅰ | 0.544 0 | ||||||
de-Ⅱ | 0.215 4 | 0.158 3 | 0.403 5 | 0.885 6 | 0.321 3 | ||
de-Ⅲ | 0.257 7 | 0.203 7 | 0.451 0 | 0.895 1 | 0.503 3 | 0.368 4 | |
CCV | SMCWA | 0.172 7 | 0.067 8 | 0.218 0 | 0.150 2 | ||
de-Ⅰ | 0.151 0 | 0.051 6 | 0.163 4 | 0.956 5 | 0.196 8 | 0.130 6 | |
de-Ⅱ | 0.161 2 | 0.055 0 | 0.189 7 | 0.195 6 | 0.141 3 | ||
de-Ⅲ | 0.188 2 | 0.957 7 | |||||
Caltech101-all | SMCWA | 0.200 4 | 0.232 7 | ||||
de-Ⅰ | 0.366 7 | 0.114 5 | 0.163 6 | 0.991 8 | 0.178 9 | 0.152 6 | |
de-Ⅱ | 0.438 5 | 0.184 6 | 0.212 3 | 0.992 8 | 0.225 3 | ||
de-Ⅲ | 0.451 3 | 0.196 1 | 0.259 7 | 0.215 5 | |||
SUNRGBD | SMCWA | 0.243 5 | 0.184 9 | 0.148 8 | |||
de-Ⅰ | 0.192 3 | 0.066 9 | 0.155 9 | 0.980 8 | 0.148 6 | 0.109 7 | |
de-Ⅱ | 0.106 8 | 0.207 7 | 0.982 0 | ||||
de-Ⅲ | 0.208 7 | 0.076 8 | 0.174 0 | 0.980 9 | 0.154 8 | 0.130 6 |
Tab. 3 Results of ablation experiments
数据集 | 算法 | NMI | ARI | SE | SP | PR | MCC |
---|---|---|---|---|---|---|---|
BDGP | SMCWA | 0.292 3 | 0.532 4 | 0.883 1 | 0.603 5 | 0.478 7 | |
de-Ⅰ | 0.133 0 | 0.092 8 | 0.349 2 | 0.837 3 | 0.382 1 | 0.232 3 | |
de-Ⅱ | 0.245 3 | 0.540 0 | 0.409 1 | ||||
de-Ⅲ | 0.256 9 | 0.187 4 | 0.513 2 | 0.878 3 | |||
Wiki | SMCWA | 0.553 5 | 0.475 1 | 0.597 2 | 0.958 0 | 0.599 9 | 0.546 9 |
de-Ⅰ | 0.488 8 | 0.424 0 | 0.541 3 | 0.952 0 | 0.530 5 | 0.484 8 | |
de-Ⅱ | 0.494 2 | 0.354 2 | 0.526 8 | 0.949 3 | 0.546 5 | 0.493 5 | |
de-Ⅲ | |||||||
CiteSeer | SMCWA | 0.292 1 | 0.251 9 | 0.531 1 | 0.912 3 | 0.569 4 | 0.459 8 |
de-Ⅰ | 0.544 0 | ||||||
de-Ⅱ | 0.215 4 | 0.158 3 | 0.403 5 | 0.885 6 | 0.321 3 | ||
de-Ⅲ | 0.257 7 | 0.203 7 | 0.451 0 | 0.895 1 | 0.503 3 | 0.368 4 | |
CCV | SMCWA | 0.172 7 | 0.067 8 | 0.218 0 | 0.150 2 | ||
de-Ⅰ | 0.151 0 | 0.051 6 | 0.163 4 | 0.956 5 | 0.196 8 | 0.130 6 | |
de-Ⅱ | 0.161 2 | 0.055 0 | 0.189 7 | 0.195 6 | 0.141 3 | ||
de-Ⅲ | 0.188 2 | 0.957 7 | |||||
Caltech101-all | SMCWA | 0.200 4 | 0.232 7 | ||||
de-Ⅰ | 0.366 7 | 0.114 5 | 0.163 6 | 0.991 8 | 0.178 9 | 0.152 6 | |
de-Ⅱ | 0.438 5 | 0.184 6 | 0.212 3 | 0.992 8 | 0.225 3 | ||
de-Ⅲ | 0.451 3 | 0.196 1 | 0.259 7 | 0.215 5 | |||
SUNRGBD | SMCWA | 0.243 5 | 0.184 9 | 0.148 8 | |||
de-Ⅰ | 0.192 3 | 0.066 9 | 0.155 9 | 0.980 8 | 0.148 6 | 0.109 7 | |
de-Ⅱ | 0.106 8 | 0.207 7 | 0.982 0 | ||||
de-Ⅲ | 0.208 7 | 0.076 8 | 0.174 0 | 0.980 9 | 0.154 8 | 0.130 6 |
1 | LI G, SONG D, BAI W, et al. Consensus and complementary regularized non-negative matrix factorization for multi-view image clustering [J]. Information Sciences, 2023, 623: 524-538. |
2 | 潘振君,梁成,张化祥.基于一致图学习的鲁棒多视图子空间聚类[J].计算机应用, 2021, 41(12): 3438-3446. |
PAN Z J, LAING C, ZHANG H X. Robust multi-view subspace clustering based on consistency graph learning [J]. Journal of Computer Applications, 2021, 41(12): 3438-3446. | |
3 | VON LUXBURG U. A tutorial on spectral clustering [J]. Statistics and Computing, 2007, 17: 395-416. |
4 | SAINI N, BANSAL D, SAHA S, et al. Multi-objective multi-view based search result clustering using differential evolution framework [J]. Expert Systems with Applications, 2021, 168: No.114299. |
5 | HUA L, GU Y, GU X, et al. A novel brain MRI image segmentation method using an improved multi-view fuzzy c-means clustering algorithm [J]. Frontiers in Neuroscience, 2021, 15: No.662674. |
6 | HE C, TANG Y, LIU H, et al. A robust multi-view clustering method for community detection combining link and content information [J]. Physica A: Statistical Mechanics and its Applications, 2019, 514: 396-411. |
7 | WANG H, YANG Y, LIU B. GMC: graph-based multi-view clustering [J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(6): 1116-1129. |
8 | LIU X, PAN G, XIE M. Multi-view subspace clustering with adaptive locally consistent graph regularization [J]. Neural Computing and Applications, 2021, 33(22): 15397-15412. |
9 | 管娇娇,钱雪忠,周世兵,等.基于格拉斯曼流形子空间融合的多视图聚类[J].计算机应用, 2022, 42(12): 3740-3749. |
GUAN J J, QIAN X Z, ZHOU S B, et al. Multi-view clustering via subspace merging on Grassmann manifold [J]. Journal of Computer Applications, 2022, 42(12): 3740-3749. | |
10 | ZHONG J, WANG N, LIN Q, et al. Weighted feature selection via discriminative sparse multi-view learning [J]. Knowledge-Based Systems, 2019, 178: 132-148. |
11 | 张嘉旭,王骏,张春香,等.基于低秩约束的熵加权多视角模糊聚类算法[J].自动化学报, 2022, 48(7): 1760-1770. |
ZHANG J X, WANG J, ZHANG C X, et al. Entropy-weighting multi-view fuzzy C-means with low rank constraint [J]. Acta Automatica Sinica, 2022, 48(7): 1760-1770. | |
12 | KANG Z, ZHOU W, ZHAO Z, et al. Large-scale multi-view subspace clustering in linear time [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 4412-4419. |
13 | WANG S, LIU X, ZHU X, et al. Fast parameter-free multi-view subspace clustering with consensus anchor guidance [J]. IEEE Transactions on Image Processing, 2022, 31: 556-568. |
14 | CHEN M S, WANG C D, HUANG D, et al. Efficient orthogonal multi-view subspace clustering [C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 127-135. |
15 | ZHANG P, LIU X W, XIONG J, et al. Consensus one-step multi-view subspace clustering [J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(10): 4676-4689. |
16 | 刘溯源,王思为,唐厂,等.基于加权锚点的多视图聚类算法[J].自动化学报, 2024, 50(6): 1160-1170. |
LIU S Y, WANG S W, TANG C, et al. Multi-view clustering with weighted anchors [J]. Acta Automatica Sinica, 2024, 50(6): 1160-1170. | |
17 | DENG X, ZHANG Y, GU F. Fusion and enhancement of consensus matrix for multi-view subspace clustering [J]. Mathematics, 2023, 11(6): No.1509. |
18 | LIU J, WANG C, GAO J, et al. Multi-view clustering via joint nonnegative matrix factorization [C]// Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Philadelphia, PA: SIAM, 2013: 252-260. |
19 | LIU J, LIU X, ZHANG Y, et al. Self-representation subspace clustering for incomplete multi-view data [C]// Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 2726-2734. |
20 | FENG L, ZHOU G, CHANG J. An adaptive weighted self-representation method for incomplete multi-view clustering [J]. International Journal of Machine Learning and Cybernetics, 2024, 15(10): 4521-4536. |
21 | YAN H, LIU S, YU P S. From joint feature selection and self-representation learning to robust multi-view subspace clustering [C]// Proceedings of the 2019 IEEE International Conference on Data Mining. Piscataway: IEEE, 2019: 1414-1419. |
22 | 黄宗超,王思为,祝恩,等.基于子空间融合的多视图聚类算法[J].郑州大学学报(理学版), 2021, 53(1): 68-73. |
HUANG Z C, WANG S W, ZHU E, et al. Multi-view clustering algorithm based on subspace fusion [J]. Journal of Zhengzhou University (Natural Science Edition), 2021, 53(1): 68-73. | |
23 | LIU M, PALADE V, ZHENG Z. Learning the consensus and complementary information for large-scale multi-view clustering [J]. Neural Networks, 2024, 172: No.106103. |
24 | ZHANG C, HU Q, FU H, et al. Latent multi-view subspace clustering [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4333-4341. |
25 | ZHENG Q, ZHU J, LI Z, et al. Feature concatenation multi-view subspace clustering [J]. Neurocomputing, 2020, 279: 89-102. |
26 | CAO X, ZHANG C, FU H, et al. Diversity-induced multi-view subspace clustering [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 586-594. |
27 | CUI G, LI Y. Nonredundancy regularization based nonnegative matrix factorization with manifold learning for multiview data representation [J]. Information Fusion, 2022, 82: 86-98. |
28 | NIE F, LI J, LI X. Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification [C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2016: 1881-1887. |
29 | NIE F, LI J, LI X. Self-weighted multiview clustering with multiple graphs [C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2017: 2564-2570. |
30 | CHICCO D, WARRENS M J, JURMAN G. The Matthews Correlation Coefficient (MCC) is more informative than Cohen’s Kappa and Brier score in binary classification assessment [J]. IEEE Access, 2021, 9: 78368-78381. |
31 | CHICCO D, TÖTSCH N, JURMAN G. The Matthews Correlation Coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation [J]. BioData Mining, 2021, 14: No.13. |
[1] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[2] | Qing WANG, Jieyu ZHAO, Xulun YE, Nongxiao WANG. Enhanced deep subspace clustering method with unified framework [J]. Journal of Computer Applications, 2024, 44(7): 1995-2003. |
[3] | Yao DONG, Yixue FU, Yongfeng DONG, Jin SHI, Chen CHEN. Survey of incomplete multi-view clustering [J]. Journal of Computer Applications, 2024, 44(6): 1673-1682. |
[4] | Zhuo ZHANG, Huazhu CHEN. Deep subspace clustering based on multiscale self-representation learning with consistency and diversity [J]. Journal of Computer Applications, 2024, 44(2): 353-359. |
[5] | Chenghao YANG, Jie HU, Hongjun WANG, Bo PENG. Incomplete multi-view clustering algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(12): 3784-3789. |
[6] | Yunhua ZHU, Bing KONG, Lihua ZHOU, Hongmei CHEN, Chongming BAO. Multi-view clustering network guided by graph contrastive learning [J]. Journal of Computer Applications, 2024, 44(10): 3267-3274. |
[7] | Ziyi HE, Yan YANG, Yiling ZHANG. Multi-view clustering network with deep fusion [J]. Journal of Computer Applications, 2023, 43(9): 2651-2656. |
[8] | Jinghuan LAO, Dong HUANG, Changdong WANG, Jianhuang LAI. Multi-view ensemble clustering algorithm based on view-wise mutual information weighting [J]. Journal of Computer Applications, 2023, 43(6): 1713-1718. |
[9] | Zhifeng MA, Junyang YU, Longge WANG. Diversity represented deep subspace clustering algorithm [J]. Journal of Computer Applications, 2023, 43(2): 407-412. |
[10] | Qize REN, Hongjie JIA, Dongyu CHEN. Large-scale subspace clustering algorithm with Local structure learning [J]. Journal of Computer Applications, 2023, 43(12): 3747-3754. |
[11] | Jiaojiao GUAN, Xuezhong QIAN, Shibing ZHOU, Kaibin JIANG, Wei SONG. Multi-view clustering via subspace merging on Grassmann manifold [J]. Journal of Computer Applications, 2022, 42(12): 3740-3749. |
[12] | Lili FAN, Guifu LU, Ganyi TANG, Dan YANG. Low-rank representation subspace clustering method based on Hessian regularization and non-negative constraint [J]. Journal of Computer Applications, 2022, 42(1): 115-122. |
[13] | LI Xingfeng, HUANG Yuqing, REN Zhenwen, LI Yihong. Robust multi-view clustering algorithm based on adaptive neighborhood [J]. Journal of Computer Applications, 2021, 41(4): 1093-1099. |
[14] | Ran GAO, Huazhu CHEN. Improved subspace clustering model based on spectral clustering [J]. Journal of Computer Applications, 2021, 41(12): 3645-3651. |
[15] | ZHU Yuna, ZHANG Yutao, YAN Shaoge, FAN Yudan, CHEN Hantuo. Protocol identification approach based on semi-supervised subspace clustering [J]. Journal of Computer Applications, 2021, 41(10): 2900-2904. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||