Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (6): 1833-1840.DOI: 10.11772/j.issn.1001-9081.2024050739
• Artificial intelligence • Previous Articles
Longbo YAN1, Wentao MAO1,2(), Zhihong ZHONG3, Lilin FAN1
Received:
2024-06-04
Revised:
2025-01-07
Accepted:
2025-02-18
Online:
2025-06-16
Published:
2025-06-10
Contact:
Wentao MAO
About author:
YAN Longbo, born in 1999, M. S. candidate. His research interests include machine learning, anomaly detection.Supported by:
通讯作者:
毛文涛
作者简介:
闫龙博(1999—),男,河南鹤壁人,硕士研究生,主要研究方向:机器学习、异常检测基金资助:
CLC Number:
Longbo YAN, Wentao MAO, Zhihong ZHONG, Lilin FAN. Robust unsupervised multi-task anomaly detection method for defect diagnosis of urban drainage pipe network[J]. Journal of Computer Applications, 2025, 45(6): 1833-1840.
闫龙博, 毛文涛, 仲志鸿, 范黎林. 面向城市排水管网缺陷诊断的鲁棒无监督多任务异常检测方法[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1833-1840.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050739
检修区域 | 轻度 缺陷数 | 中度 缺陷数 | 严重 缺陷数 | 重大 缺陷数 | 共计 |
---|---|---|---|---|---|
清潭东 | 0 | 18 | 4 | 4 | 26 |
清潭南 | 1 | 14 | 1 | 1 | 17 |
Tab. 1 Part of repair report information
检修区域 | 轻度 缺陷数 | 中度 缺陷数 | 严重 缺陷数 | 重大 缺陷数 | 共计 |
---|---|---|---|---|---|
清潭东 | 0 | 18 | 4 | 4 | 26 |
清潭南 | 1 | 14 | 1 | 1 | 17 |
方法类型 | 方法名称 | 方法核心 |
---|---|---|
基于统计的 方法 | Z-score[ | 衡量数据点与均值的 标准偏差之间的关系 |
MGD[ | 多维数据的高维概率 分布建模 | |
传统机器学习 方法 | SVDD[ | 使用SVM找到数据集 最小超球体检测异常 |
IForest[ | 使用随机树检测异常点 | |
OCSVM[ | 使用正常样本密度估计寻找 超平面区分异常值 | |
深度学习 方法 | AE[ | 衡量预测值与实际值之间的 绝对误差 |
LSTM-AE[ | LSTM替换AE的前馈网络 | |
USAD[ | AE+GANs |
Tab. 2 Description of comparative methods
方法类型 | 方法名称 | 方法核心 |
---|---|---|
基于统计的 方法 | Z-score[ | 衡量数据点与均值的 标准偏差之间的关系 |
MGD[ | 多维数据的高维概率 分布建模 | |
传统机器学习 方法 | SVDD[ | 使用SVM找到数据集 最小超球体检测异常 |
IForest[ | 使用随机树检测异常点 | |
OCSVM[ | 使用正常样本密度估计寻找 超平面区分异常值 | |
深度学习 方法 | AE[ | 衡量预测值与实际值之间的 绝对误差 |
LSTM-AE[ | LSTM替换AE的前馈网络 | |
USAD[ | AE+GANs |
方法 | 降雨权重 | 优先检修 区域 | |||
---|---|---|---|---|---|
清潭南 | 怀德东 | 清潭东 | 清潭西 | ||
Z-score | 0.115 2 | 0.174 8 | 0.130 7 | 0.093 2 | 怀德东 |
MGD | 0.070 4 | 0.130 7 | 0.100 3 | 0.088 2 | 清潭西 |
SVDD | 0.129 6 | 0.204 2 | 0.132 2 | 0.128 1 | 怀德东 |
IForest | 0.147 2 | 0.186 3 | 0.106 4 | 0.109 8 | 清潭东 |
OCSVM | 0.150 4 | 0.199 3 | 0.121 6 | 0.131 4 | 怀德东 |
AE | 0.120 0 | 0.081 6 | 0.121 6 | 0.104 8 | 清潭南 |
LSTM-AE | 0.118 4 | 0.150 3 | 0.050 2 | 0.101 5 | 怀德东 |
USAD | 0.112 0 | 0.142 2 | 0.063 8 | 0.096 5 | 怀德东 |
本文方法 | 0.020 8 | 0.018 0 | 0.009 1 | 0.005 0 | 清潭东 |
Tab. 3 Performance comparison of various anomaly detection methods
方法 | 降雨权重 | 优先检修 区域 | |||
---|---|---|---|---|---|
清潭南 | 怀德东 | 清潭东 | 清潭西 | ||
Z-score | 0.115 2 | 0.174 8 | 0.130 7 | 0.093 2 | 怀德东 |
MGD | 0.070 4 | 0.130 7 | 0.100 3 | 0.088 2 | 清潭西 |
SVDD | 0.129 6 | 0.204 2 | 0.132 2 | 0.128 1 | 怀德东 |
IForest | 0.147 2 | 0.186 3 | 0.106 4 | 0.109 8 | 清潭东 |
OCSVM | 0.150 4 | 0.199 3 | 0.121 6 | 0.131 4 | 怀德东 |
AE | 0.120 0 | 0.081 6 | 0.121 6 | 0.104 8 | 清潭南 |
LSTM-AE | 0.118 4 | 0.150 3 | 0.050 2 | 0.101 5 | 怀德东 |
USAD | 0.112 0 | 0.142 2 | 0.063 8 | 0.096 5 | 怀德东 |
本文方法 | 0.020 8 | 0.018 0 | 0.009 1 | 0.005 0 | 清潭东 |
1 | YIN X, CHEN Y, BOUFERGUENE A, et al. A deep learning-based framework for an automated defect detection system for sewer pipes [J]. Automation in Construction, 2020, 109: 102967. |
2 | 李翊君,张文涛.城市新型智慧排水系统总体设计探讨[J].城市道桥与防洪,2021(12):75-78. |
LI Y J, ZHANG W T. Discussion on overall design of new urban smart drainage system [J]. Urban Roads Bridges and Flood Control, 2021(12): 75-78. | |
3 | 李萌,郭效琛,赵冬泉,等.在线监测技术在排水诊断中的应用[J].给水排水,2021,47(10):124-129. |
LI M, GUO X C, ZHAO D Q, et al. Application of on-line monitoring technology in water drainage diagnose [J]. Water and Wastewater Engineering, 2021, 47(10): 124-129. | |
4 | CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: a survey [J]. ACM Computing Surveys, 2009, 41(3): No. 15. |
5 | TOLEDANO M, COHEN I, BEN-SIMHON Y, et al. Real-time anomaly detection system for time series at scale[C]// Proceedings of the 2018 Workshop on Anomaly Detection in Finance. [S.l.]: PMLR, 2018: 56-65. |
6 | NI X, YANG D, ZHANG H, et al. Time-series transfer learning: an early stage imbalance fault detection method based on feature enhancement and improved support vector data description[J]. IEEE Transactions on Industrial Electronics, 2022, 70(8): 8488-8498. |
7 | MAO W, WANG G, KOU L, et al. Deep domain-adversarial anomaly detection with one-class transfer learning[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(2): 524-546. |
8 | MORADI M, HAMIDZADEH J, MONSEFI R. ABT-SVDD: a method for uncertainty handling in domain adaptation using belief function theory[J]. Applied Soft Computing, 2023, 147(C): 110787. |
9 | MALHOTRA P, RAMAKRISHNAN A, ANAND G, et al. LSTM-based encoder-decoder for multi-sensor anomaly detection[C/OL]// Proceedings of the 2016 International Conference on Machine Learning: Anomaly Detection Workshop. New York: ACM, 2016 [2024-01-22]. . |
10 | PARK D, HOSHI Y, KEMP C C. A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1544-1551. |
11 | AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD: unsupervised anomaly detection on multivariate time series[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 3395-3404. |
12 | KIEU T, YANG B, JENSEN C S. Outlier detection for multidimensional time series using deep neural networks[C]// Proceedings of the 2018 19th IEEE International Conference on Mobile Data Management. Piscataway: IEEE, 2018: 125-134. |
13 | 唐伦,赵禹辰,薛呈呈,等.一种基于时间序列分解和时空信息提取的云服务器异常检测模型[J].电子与信息学报,2024,46(6):2638-2646. |
TANG L, ZHAO Y C, XUE C C, et al. A cloud server anomaly detection model based on time series decomposition and spatiotemporal information extraction [J]. Journal of Electronics & Information Technology, 2024, 46(6): 2638-2646. | |
14 | WANG W, LIANG C, TANG L, et al. Federated multi-discriminator BiWGAN-GP based collaborative anomaly detection for virtualized network slicing[J]. IEEE Transactions on Mobile Computing, 2023, 22(11): 6445-6459. |
15 | 姜昊,郭文明.提取时空特征的无监督时间序列异常检测[J].计算机科学与应用,2022,12(3):610-621. |
JIANG H, GUO W M. Time series anomaly detection model based on deep mining of spatio-temporal features[J]. Computer Science and Application, 2022, 12(3): 610-621. | |
16 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2023-12-06]. . |
17 | RUFF L, VANDERMEULEN R, GOERNITZ N, et al. Deep one-class classification [C]// Proceedings of the 35th International Conference on Machine Learning, PMLR 80. New York: ACM, 2018: 4393-4402. |
18 | TAX D M J, DUIN R P W. Support vector data description[J]. Machine Learning, 2004, 54: 45-66. |
19 | WU D, MA X, OLSON D L. Financial distress prediction using integrated Z-score and multilayer perceptron neural networks[J]. Decision Support Systems, 2022, 159(4): 113814. |
20 | KHARAL A Y, KHALID H A, GASTLI A, et al. A novel features-based multivariate Gaussian distribution method for the fraudulent consumers detection in the power utilities of developing countries [J]. IEEE Access, 2021, 9: 81057-81067. |
21 | ZHANG C, PENG K, DONG J. An incipient fault detection and self-learning identification method based on robust SVDD and RBM-PNN [J]. Journal of Process Control, 2020, 85: 173-183. |
22 | LIU F T, TING K M, ZHOU Z-H. Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery from Data, 2012, 6(1): No. 3. |
23 | SCHÖLKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443-1471. |
24 | WEI Y, JANG-JACCARD J, SABRINA F, et al. AE-MLP: a hybrid deep learning approach for DDoS detection and classification [J]. IEEE Access, 2021, 9: 146810-146821. |
25 | CHEN H, LIU H, CHU X, et al. Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network[J]. Renewable Energy, 2021, 172: 829-840. |
[1] | Lanhao LI, Haojun YAN, Haoyi ZHOU, Qingyun SUN, Jianxin LI. Multi-scale information fusion time series long-term forecasting model based on neural network [J]. Journal of Computer Applications, 2025, 45(6): 1776-1783. |
[2] | Wenpeng WANG, Yinchang QIN, Wenxuan SHI. Review of unsupervised deep learning methods for industrial defect detection [J]. Journal of Computer Applications, 2025, 45(5): 1658-1670. |
[3] | Zihe CHEN, Bin CHEN. Unsupervised point cloud anomaly detection based on multi-representation fusion [J]. Journal of Computer Applications, 2025, 45(5): 1677-1685. |
[4] | Weichao DANG, Chujun SONG, Gaimei GAO, Chunxia LIU. Multi-behavior recommendation based on cascading residual graph convolutional network [J]. Journal of Computer Applications, 2025, 45(4): 1223-1231. |
[5] | Lihu PAN, Shouxin PENG, Rui ZHANG, Zhiyang XUE, Xuzhen MAO. Video anomaly detection for moving foreground regions [J]. Journal of Computer Applications, 2025, 45(4): 1300-1309. |
[6] | Guangju YANG, Tianjian LUO, Kaijun WANG, Siqi YANG. Multi-branch multi-view based contextual contrastive representation learning method for time series [J]. Journal of Computer Applications, 2025, 45(4): 1042-1052. |
[7] | Zhenhua XUE, Qiang LI, Chao HUANG. Vision foundation model-driven pixel-level image anomaly detection method [J]. Journal of Computer Applications, 2025, 45(3): 823-831. |
[8] | Yan LI, Guanhua YE, Yawen LI, Meiyu LIANG. Enterprise ESG indicator prediction model based on richness coordination technology [J]. Journal of Computer Applications, 2025, 45(2): 670-676. |
[9] | Zhiqiang REN, Xuebin CHEN. FedAud: adaptive defense mechanism based on historical model updates [J]. Journal of Computer Applications, 2025, 45(2): 490-496. |
[10] | Miaolei DENG, Yupei KAN, Chuanchuan SUN, Haihang XU, Shaojun FAN, Xin ZHOU. Summary of network intrusion detection systems based on deep learning [J]. Journal of Computer Applications, 2025, 45(2): 453-466. |
[11] | Qianting ZHANG, Liying HU, Lifei CHEN. Robust shapelet representation method for time series [J]. Journal of Computer Applications, 2025, 45(2): 436-443. |
[12] | Hanlin ZHANG, Junlu WANG, Baoyan SONG. Time series event classification method fused with derived features [J]. Journal of Computer Applications, 2025, 45(2): 428-435. |
[13] | Dixin WANG, Jiahao WANG, Min LI, Hao CHEN, Guangyao HU, Yu GONG. Abnormal attack detection for underwater acoustic communication network [J]. Journal of Computer Applications, 2025, 45(2): 526-533. |
[14] | Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model [J]. Journal of Computer Applications, 2025, 45(1): 59-68. |
[15] | Zijun MIAO, Fei LUO, Weichao DING, Wenbo DONG. Traffic signal control algorithm based on overall state prediction and fair experience replay [J]. Journal of Computer Applications, 2025, 45(1): 337-344. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||