Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (8): 2672-2682.DOI: 10.11772/j.issn.1001-9081.2025010117
• Network and communications • Previous Articles
Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG()
Received:
2025-02-07
Revised:
2025-04-14
Accepted:
2025-04-14
Online:
2025-05-26
Published:
2025-08-10
Contact:
Jiachuan SHENG
About author:
ZHOU Jin, born in 1981, Ph. D., associate professor. Her research interests include deep learning, intelligent information processing.Supported by:
通讯作者:
盛家川
作者简介:
周金(1981—),女,天津人,副教授,博士,主要研究方向:深度学习、智能信息处理基金资助:
CLC Number:
Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG. Modulation recognition network for complex electromagnetic environments[J]. Journal of Computer Applications, 2025, 45(8): 2672-2682.
周金, 李玉芝, 张徐, 高硕, 张立, 盛家川. 复杂电磁环境下的调制识别网络[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2672-2682.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2025010117
网络 | 采用方法 | SNR为-20~18 dB时的平均识别准确率/% |
---|---|---|
CLDNN[ | 基于模型的方法 | 45.89 |
ResNet[ | 基于模型的方法 | 54.85 |
LSTM[ | 基于模型的方法 | 56.69 |
MM-Net[ | 多模态特征提取及融合方法 | 59.01 |
TADCNN[ | 基于信号去噪方法 | 62.23 |
GAN-MnACL[ | 基于生成对抗网络的去噪及双模态特征融合方法 | 63.56 |
本文网络 | 去噪双模态注意力 | 70.66 |
Tab. 1 Comparison of average recognition accuracy of several modulation recognition networks with impulsive noise
网络 | 采用方法 | SNR为-20~18 dB时的平均识别准确率/% |
---|---|---|
CLDNN[ | 基于模型的方法 | 45.89 |
ResNet[ | 基于模型的方法 | 54.85 |
LSTM[ | 基于模型的方法 | 56.69 |
MM-Net[ | 多模态特征提取及融合方法 | 59.01 |
TADCNN[ | 基于信号去噪方法 | 62.23 |
GAN-MnACL[ | 基于生成对抗网络的去噪及双模态特征融合方法 | 63.56 |
本文网络 | 去噪双模态注意力 | 70.66 |
网络 | FLOPs/106 | 参数量/103 | 推演时间/ms |
---|---|---|---|
CLDNN[ | 236 | 518 | 139 |
ResNet[ | 92 | 3 098 | 212 |
LSTM[ | 39 | 205 | 69 |
MM-Net[ | 22 | 159 | 52 |
TADCNN[ | 46 | 204 | 61 |
GAN-MnACL[ | 73 | 147 | 65 |
本文完整网络 | 137 | 2 056 | 78 |
去掉干扰生成器的本文网络 | 98 | 127 | 29 |
Tab. 2 Computational complexity comparison of different deep learning-based AMR networks
网络 | FLOPs/106 | 参数量/103 | 推演时间/ms |
---|---|---|---|
CLDNN[ | 236 | 518 | 139 |
ResNet[ | 92 | 3 098 | 212 |
LSTM[ | 39 | 205 | 69 |
MM-Net[ | 22 | 159 | 52 |
TADCNN[ | 46 | 204 | 61 |
GAN-MnACL[ | 73 | 147 | 65 |
本文完整网络 | 137 | 2 056 | 78 |
去掉干扰生成器的本文网络 | 98 | 127 | 29 |
[1] | 石锐,李勇,朱延晗. 基于特征梯度均值化的调制信号对抗样本攻击算法[J]. 计算机应用, 2024, 44(8): 2521-2527. |
SHI R, LI Y, ZHU Y H. Adversarial sample attack algorithm of modulation signal based on equalization of feature gradient[J]. Journal of Computer Applications, 2024, 44(8): 2521-2527. | |
[2] | 杨佳仪,王千帆,姚忻圆梦,等. 基于定型匹配成形的5G LDPC编码调制方案[J]. 电子学报, 2024, 52(9): 2979-2987. |
YANG J Y, WANG Q F, YAO X Y M, et al. A scheme for 5G LDPC coded modulation based on CCDM shaping[J]. Acta Electronica Sinica, 2024, 52(9): 2979-2987. | |
[3] | 李涛,苏楠,韦荻山,等. 基于高阶矩特征选择和权值优化的信噪比估计[J]. 电子学报, 2024, 52(12): 3976-3984. |
LI T, SU N, WEI D S, et al. Estimation of signal-to-noise ratio based on feature selection and weight optimization of high-order moments[J]. Acta Electronica Sinica, 2024, 52(12): 3976-3984. | |
[4] | 张伟,李想,翟志凯,等. 复杂环境下电磁目标信号认知处理架构与应用研究[J]. 电子科技大学学报, 2024, 53(1): 40-49. |
ZHANG W, LI X, ZHAI Z K, et al. Research on cognitive processing architecture and application of electromagnetic signal in complex environment[J]. Journal of University of Electronic Science and Technology of China, 2024, 53(1): 40-49. | |
[5] | DING R, ZHOU F, WU Q, et al. Data and knowledge dual-driven automatic modulation classification for 6G wireless communications[J]. IEEE Transactions on Wireless Communications, 2024, 23(5): 4228-4242. |
[6] | BAI J, LIU X, WANG Y, et al. Integrating prior knowledge and contrast feature for signal modulation classification[J]. IEEE Internet of Things Journal, 2024, 11(12):21461-21473. |
[7] | YAN X, YANG P, ZHONG X, et al. Automatic composite-modulation classification using ultra lightweight deep-learning network based on cyclic-paw-print[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(3): 866-879. |
[8] | KUMAR Y, SHEORAN M, JAJOO G, et al. Automatic modulation classification based on constellation density using deep learning[J]. IEEE Communications Letters, 2020, 24(6):1275-1278. |
[9] | LIN S, ZENG Y, GONG Y. Learning of time-frequency attention mechanism for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2022, 11(4):707-711. |
[10] | MENG F, CHEN P, WU L, et al. Automatic modulation classification: a deep learning enabled approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11):10760-10772. |
[11] | KOJIMA S, MARUTA K, FENG Y, et al. CNN-based joint SNR and Doppler shift classification using spectrogram images for adaptive modulation and coding[J]. IEEE Transactions on Communications, 2021, 69(8): 5152-5167. |
[12] | KUMAR A, CHAUDHARI M S, MAJHI S. Automatic modulation classification for OFDM systems using bi-stream and attention-based CNN-LSTM model[J]. IEEE Communications Letters, 2024, 28(3): 552-556. |
[13] | CAI J, GAN F, CAO X, et al. Signal modulation classification based on the Transformer network[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(3): 1348-1357. |
[14] | MA W, CAI Z, WANG C. A Transformer and convolution-based learning framework for automatic modulation classification[J]. IEEE Communications Letters, 2024, 28(6): 1392-1396. |
[15] | YIN L, XIANG X, LIANG Y. Cyclostationary feature based modulation classification with convolutional neural network in multipath fading channels[J]. IEEE Access, 2023, 11:105455-105465. |
[16] | LUAN S, GAO Y, CHEN W, et al. Automatic modulation classification: decision tree based on error entropy and global-local feature-coupling network under mixed noise and fading channels[J]. IEEE Wireless Communications Letters, 2022, 11(8): 1703-1707. |
[17] | 李欣然,李春国,明钰婷,等. 脉冲噪声环境下的调制识别算法[J]. 信号处理, 2024, 40(8): 1497-1507. |
LI X R, LI C G, MING Y T, et al. Modulation recognition algorithm in impulsive noise environments[J]. Journal of Signal Processing, 2024, 40(8): 1497-1507. | |
[18] | 王洋,沈同圣,汪涛,等. 融合多特征的水声通信信号调制识别方法[J/OL]. 声学学报 [2025-03-08].. |
WANG Y, SHEN T S, WANG T, et al. Modulation classification method based on multi-feature combination for underwater acoustic communication signals[J]. Acta Acustica [2025-03-08].. | |
[19] | 周锋,韦少帅,乔钢. VMD-小波去噪与双线性ResNet结合坐标注意力机制的水声信号调制识别方法[J/OL]. 哈尔滨工程大学学报 [2025-03-08].. |
ZHOU F, WEI S S, QIAO G. A method for modulation recognition of underwater acoustic communication signals based on VMD-wavelet denoising, bilinear model ResNet, and coordinate attention mechanism[J]. Journal of Harbin Engineering University [2025-03-08].. | |
[20] | 张本辉,刘松涛,晁玉龙. 基于DBO-DAOD的未知雷达调制方式识别算法[J/OL]. 系统工程与电子技术 [2025-05-09].. |
ZHANG B H, LIU S T, CHAO Y L. Unknown radar modulation mode recognition algorithm based on DBO-DAOD[J/OL]. Systems Engineering and Electronics [2025-05-09].. | |
[21] | 王华华,张睿哲,黄永洪. 基于生成式对抗网络和多模态注意力机制的扩频与常规调制信号识别方法[J]. 电子与信息学报, 2024, 46(4): 1212-1221. |
WANG H H, ZHANG R Z, HUANG Y H. Spread spectrum and conventional modulation signal recognition method based on generative adversarial network and multi-modal attention mechanism[J]. Journal of Electronics and Information Technology, 2024, 46(4): 1212-1221. | |
[22] | WEST N E, O’SHEA T. Deep architectures for modulation recognition[C]// Proceedings of the 2017 IEEE International Symposium on Dynamic Spectrum Access Networks. Piscataway: IEEE, 2017:1-6. |
[23] | TRIARIDIS K, DOUMANIDIS C, CHATZIDIAMANTIS N D, et al. MM-Net: a multi-modal approach toward automatic modulation classification[J]. IEEE Communications Letters, 2024, 28(2):328-331. |
[24] | ZHANG H, YUAN L, WU G, et al. Automatic modulation classification using involution enabled residual networks[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2417-2420. |
[25] | ZHOU Q, JING X, HE Y, et al. LSTM-based automatic modulation classification[C]// Proceedings of the 2020 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting. Piscataway: IEEE, 2020:1-4. |
[26] | AN T T, LEE B M. Robust automatic modulation classification in low signal to noise ratio[J]. IEEE Access, 2023, 11:7860-7872. |
[1] | Haoyu LIU, Pengwei KONG, Yaoli WANG, Qing CHANG. Pedestrian detection algorithm based on multi-view information [J]. Journal of Computer Applications, 2025, 45(7): 2325-2332. |
[2] | Yongpeng TAO, Shiqi BAI, Zhengwen ZHOU. Neural architecture search for multi-tissue segmentation using convolutional and transformer-based networks in glioma segmentation [J]. Journal of Computer Applications, 2025, 45(7): 2378-2386. |
[3] | Dehui ZHOU, Jun ZHAO, Jinfeng CHENG. Tiny defect detection algorithm for bearing surface based on RT-DETR [J]. Journal of Computer Applications, 2025, 45(6): 1987-1997. |
[4] | Sheping ZHAI, Yan HUANG, Qing YANG, Rui YANG. Multi-view entity alignment combining triples and text attributes [J]. Journal of Computer Applications, 2025, 45(6): 1793-1800. |
[5] | Ying HUANG, Shengmei GAO, Guang CHEN, Su LIU. Low-light image enhancement network combining signal-to-noise ratio guided dual-branch structure and histogram equalization [J]. Journal of Computer Applications, 2025, 45(6): 1971-1979. |
[6] | Pengcheng XU, Lei HE, Chuan LI, Weiqi QIAN, Tun ZHAO. Deep symbolic regression method based on Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1455-1463. |
[7] | Kai CHEN, Hailiang YE, Feilong CAO. Classification algorithm for point cloud based on local-global interaction and structural Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1671-1676. |
[8] | Pengyu CHEN, Xiushan NIE, Nanjun LI, Tuo LI. Semi-supervised video object segmentation method based on spatio-temporal decoupling and regional robustness enhancement [J]. Journal of Computer Applications, 2025, 45(5): 1379-1386. |
[9] | Qing ZHANG, Fan YANG, Yuhan FANG. Chinese spelling correction algorithm based on multi-modal information fusion [J]. Journal of Computer Applications, 2025, 45(5): 1528-1534. |
[10] | Hui LI, Bingzhi JIA, Chenxi WANG, Ziyu DONG, Jilong LI, Zhaoman ZHONG, Yanyan CHEN. Generative adversarial network underwater image enhancement model based on Swin Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1439-1446. |
[11] | Dingmu YANG, Longqiang NI, Jing LIANG, Zhaoyuan QIU, Yongzhen ZHANG, Zhiqiang QI. Protocol conversion method based on semantic similarity [J]. Journal of Computer Applications, 2025, 45(4): 1263-1270. |
[12] | Lihu PAN, Shouxin PENG, Rui ZHANG, Zhiyang XUE, Xuzhen MAO. Video anomaly detection for moving foreground regions [J]. Journal of Computer Applications, 2025, 45(4): 1300-1309. |
[13] | Baohua YUAN, Jialu CHEN, Huan WANG. Medical image segmentation network integrating multi-scale semantics and parallel double-branch [J]. Journal of Computer Applications, 2025, 45(3): 988-995. |
[14] | Hong SHANGGUAN, Huiying REN, Xiong ZHANG, Xinglong HAN, Zhiguo GUI, Yanling WANG. Low-dose CT denoising model based on dual encoder-decoder generative adversarial network [J]. Journal of Computer Applications, 2025, 45(2): 624-632. |
[15] | Yalun WANG, Yangsen ZHANG, Siwen ZHU. Headline generation model with position embedding for knowledge reasoning [J]. Journal of Computer Applications, 2025, 45(2): 345-353. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||