Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 2984-2992.DOI: 10.11772/j.issn.1001-9081.2024081146
• Multimedia computing and computer simulation • Previous Articles
Jiaxiang ZHANG, Xiaoming LI(), Jiahui ZHANG
Received:
2024-08-14
Revised:
2024-09-28
Accepted:
2024-10-09
Online:
2024-11-07
Published:
2025-09-10
Contact:
Xiaoming LI
About author:
ZHANG Jiaxiang, born in 1999, M. S. candidate. His research interests include computer vision, few-shot object detection, few-shot learning.Supported by:
通讯作者:
李晓明
作者简介:
张嘉祥(1999—),男,山西文水人,硕士研究生,CCF会员,主要研究方向:计算机视觉、小样本目标检测、小样本学习基金资助:
CLC Number:
Jiaxiang ZHANG, Xiaoming LI, Jiahui ZHANG. Few-shot object detection algorithm based on new category feature enhancement and metric mechanism[J]. Journal of Computer Applications, 2025, 45(9): 2984-2992.
张嘉祥, 李晓明, 张佳慧. 结合新类特征增强与度量机制的小样本目标检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2984-2992.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024081146
算法 | Split1 | Split2 | Split3 | 平均 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
k=1 | k=2 | k=3 | k=5 | k=10 | k=1 | k=2 | k=3 | k=5 | k=10 | k=1 | k=2 | k=3 | k=5 | k=10 | ||
TFA | 39.8 | 36.1 | 44.7 | 55.7 | 56.0 | 23.5 | 26.9 | 34.1 | 35.1 | 39.1 | 30.8 | 34.8 | 42.8 | 49.5 | 49.8 | 39.9 |
MPSR | 41.7 | — | 51.4 | 55.2 | 61.8 | 24.3 | — | 39.0 | 39.7 | 47.2 | 35.6 | — | 42.3 | 48.0 | 49.7 | 44.7 |
AttFDNet | 29.6 | 34.9 | 35.1 | — | — | 16.0 | 20.7 | 22.1 | — | — | 22.6 | 29.1 | 32.0 | — | — | 26.9 |
FSCN | 40.7 | 45.1 | 46.5 | 57.4 | 62.4 | 27.3 | 31.4 | 40.8 | 42.7 | 46.3 | 31.2 | 36.4 | 43.7 | 50.1 | 55.6 | 43.8 |
FSOD-UP | 43.8 | 47.8 | 50.3 | 55.4 | 61.4 | 31.2 | 30.5 | 41.2 | 42.2 | 48.3 | 35.5 | 39.7 | 43.9 | 50.6 | 53.5 | 45.0 |
AGCM | 28.3 | — | — | 49.0 | 54.8 | 17.2 | — | — | 38.5 | 47.0 | 22.9 | — | — | 46.5 | 51.5 | 39.5 |
Meta R-CNN | 19.9 | 25.5 | 35.0 | 45.7 | 51.5 | 10.4 | 19.4 | 29.6 | 34.8 | 45.4 | 14.3 | 18.2 | 27.5 | 41.2 | 48.1 | 31.1 |
AFD-Net[ | 31.7 | 41.4 | 49.5 | 54.6 | 60.3 | 23.2 | 31.3 | 38.4 | 41.9 | 46.9 | 27.4 | 35.3 | 41.7 | 46.7 | 53.5 | 41.6 |
DCNet[ | 33.9 | 37.4 | 43.7 | 51.1 | 59.6 | 23.2 | 24.8 | 30.6 | 36.7 | 46.6 | 32.3 | 34.9 | 39.7 | 42.6 | 50.7 | 39.2 |
CARed[ | 36.5 | 45.2 | 47.1 | 50.8 | 58.8 | 26.4 | 31.0 | 37.9 | 43.5 | 51.1 | 20.2 | 33.8 | 41.6 | 48.3 | 55.3 | 41.8 |
APSPNet[ | 24.3 | 36.5 | 44.9 | 52.0 | 59.2 | 20.5 | 27.5 | 33.1 | 40.9 | 47.1 | 22.4 | 33.0 | 37.8 | 43.9 | 51.5 | 38.3 |
FEMM-FSOD | 44.1 | 46.9 | 48.4 | 61.2 | 62.6 | 28.0 | 30.0 | 37.2 | 43.6 | 45.3 | 35.8 | 42.9 | 43.9 | 53.2 | 55.6 | 45.2 |
Tab. 1 Comparison of mAP50 of different algorithms on VOC2007 dataset
算法 | Split1 | Split2 | Split3 | 平均 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
k=1 | k=2 | k=3 | k=5 | k=10 | k=1 | k=2 | k=3 | k=5 | k=10 | k=1 | k=2 | k=3 | k=5 | k=10 | ||
TFA | 39.8 | 36.1 | 44.7 | 55.7 | 56.0 | 23.5 | 26.9 | 34.1 | 35.1 | 39.1 | 30.8 | 34.8 | 42.8 | 49.5 | 49.8 | 39.9 |
MPSR | 41.7 | — | 51.4 | 55.2 | 61.8 | 24.3 | — | 39.0 | 39.7 | 47.2 | 35.6 | — | 42.3 | 48.0 | 49.7 | 44.7 |
AttFDNet | 29.6 | 34.9 | 35.1 | — | — | 16.0 | 20.7 | 22.1 | — | — | 22.6 | 29.1 | 32.0 | — | — | 26.9 |
FSCN | 40.7 | 45.1 | 46.5 | 57.4 | 62.4 | 27.3 | 31.4 | 40.8 | 42.7 | 46.3 | 31.2 | 36.4 | 43.7 | 50.1 | 55.6 | 43.8 |
FSOD-UP | 43.8 | 47.8 | 50.3 | 55.4 | 61.4 | 31.2 | 30.5 | 41.2 | 42.2 | 48.3 | 35.5 | 39.7 | 43.9 | 50.6 | 53.5 | 45.0 |
AGCM | 28.3 | — | — | 49.0 | 54.8 | 17.2 | — | — | 38.5 | 47.0 | 22.9 | — | — | 46.5 | 51.5 | 39.5 |
Meta R-CNN | 19.9 | 25.5 | 35.0 | 45.7 | 51.5 | 10.4 | 19.4 | 29.6 | 34.8 | 45.4 | 14.3 | 18.2 | 27.5 | 41.2 | 48.1 | 31.1 |
AFD-Net[ | 31.7 | 41.4 | 49.5 | 54.6 | 60.3 | 23.2 | 31.3 | 38.4 | 41.9 | 46.9 | 27.4 | 35.3 | 41.7 | 46.7 | 53.5 | 41.6 |
DCNet[ | 33.9 | 37.4 | 43.7 | 51.1 | 59.6 | 23.2 | 24.8 | 30.6 | 36.7 | 46.6 | 32.3 | 34.9 | 39.7 | 42.6 | 50.7 | 39.2 |
CARed[ | 36.5 | 45.2 | 47.1 | 50.8 | 58.8 | 26.4 | 31.0 | 37.9 | 43.5 | 51.1 | 20.2 | 33.8 | 41.6 | 48.3 | 55.3 | 41.8 |
APSPNet[ | 24.3 | 36.5 | 44.9 | 52.0 | 59.2 | 20.5 | 27.5 | 33.1 | 40.9 | 47.1 | 22.4 | 33.0 | 37.8 | 43.9 | 51.5 | 38.3 |
FEMM-FSOD | 44.1 | 46.9 | 48.4 | 61.2 | 62.6 | 28.0 | 30.0 | 37.2 | 43.6 | 45.3 | 35.8 | 42.9 | 43.9 | 53.2 | 55.6 | 45.2 |
算法 | 10shot | 30shot | ||||
---|---|---|---|---|---|---|
mAP | mAP50 | mAP75 | mAP | mAP50 | mAP75 | |
TFA | 10.0 | — | 9.3 | 13.7 | — | 13.4 |
MPSR | 9.8 | 17.9 | 9.7 | 14.1 | 25.4 | 14.2 |
FSCN | 11.3 | 20.3 | — | 15.1 | 29.4 | — |
FSCE | 11.9 | — | 10.5 | 16.4 | — | 16.2 |
FSSP | 9.9 | 20.4 | 9.6 | 14.2 | 25.0 | 13.9 |
FSOD-UP | 11.0 | — | 10.7 | 15.6 | — | 15.7 |
SRR-FSOD[ | 11.3 | 23.0 | 9.8 | 14.7 | 29.2 | 13.5 |
Meta R-CNN | 8.7 | 19.1 | 6.6 | 12.4 | 25.3 | 10.8 |
DCNet | 12.8 | 23.4 | 11.2 | 18.6 | 32.6 | 17.5 |
Meta Faster R-CNN | 11.3 | 23.5 | 9.8 | 15.9 | 31.9 | 14.7 |
FSED[ | 11.2 | 25.7 | 8.4 | 13.8 | 30.9 | 10.7 |
FEMM-FSOD | 13.6 | 24.2 | 11.5 | 18.9 | 33.1 | 17.8 |
Tab. 2 Comparison experimental results of different algorithms on MSCOCO dataset
算法 | 10shot | 30shot | ||||
---|---|---|---|---|---|---|
mAP | mAP50 | mAP75 | mAP | mAP50 | mAP75 | |
TFA | 10.0 | — | 9.3 | 13.7 | — | 13.4 |
MPSR | 9.8 | 17.9 | 9.7 | 14.1 | 25.4 | 14.2 |
FSCN | 11.3 | 20.3 | — | 15.1 | 29.4 | — |
FSCE | 11.9 | — | 10.5 | 16.4 | — | 16.2 |
FSSP | 9.9 | 20.4 | 9.6 | 14.2 | 25.0 | 13.9 |
FSOD-UP | 11.0 | — | 10.7 | 15.6 | — | 15.7 |
SRR-FSOD[ | 11.3 | 23.0 | 9.8 | 14.7 | 29.2 | 13.5 |
Meta R-CNN | 8.7 | 19.1 | 6.6 | 12.4 | 25.3 | 10.8 |
DCNet | 12.8 | 23.4 | 11.2 | 18.6 | 32.6 | 17.5 |
Meta Faster R-CNN | 11.3 | 23.5 | 9.8 | 15.9 | 31.9 | 14.7 |
FSED[ | 11.2 | 25.7 | 8.4 | 13.8 | 30.9 | 10.7 |
FEMM-FSOD | 13.6 | 24.2 | 11.5 | 18.9 | 33.1 | 17.8 |
Baseline | CDPM | ICMF | CohSep Loss | 1shot | 2shot | 3shot | 5shot | 10shot |
---|---|---|---|---|---|---|---|---|
√ | 39.8 | 36.1 | 44.7 | 55.7 | 56.0 | |||
√ | 42.6 | 43.8 | 47.9 | 58.2 | 59.5 | |||
√ | 41.0 | 45.3 | 46.7 | 60.2 | 60.5 | |||
√ | √ | 43.5 | 45.2 | 48.1 | 59.0 | 61.0 | ||
√ | √ | 42.4 | 46.1 | 47.5 | 60.4 | 61.6 | ||
√ | √ | √ | 44.1 | 46.9 | 48.4 | 61.2 | 62.6 |
Tab. 3 Ablation experimental results (mAP50)
Baseline | CDPM | ICMF | CohSep Loss | 1shot | 2shot | 3shot | 5shot | 10shot |
---|---|---|---|---|---|---|---|---|
√ | 39.8 | 36.1 | 44.7 | 55.7 | 56.0 | |||
√ | 42.6 | 43.8 | 47.9 | 58.2 | 59.5 | |||
√ | 41.0 | 45.3 | 46.7 | 60.2 | 60.5 | |||
√ | √ | 43.5 | 45.2 | 48.1 | 59.0 | 61.0 | ||
√ | √ | 42.4 | 46.1 | 47.5 | 60.4 | 61.6 | ||
√ | √ | √ | 44.1 | 46.9 | 48.4 | 61.2 | 62.6 |
模块 | 1shot | 2shot | 3shot | 5shot | 10shot |
---|---|---|---|---|---|
GAM | 39.1 | 34.2 | 39.1 | 52.3 | 54.4 |
LSKA-53 | 42.1 | 35.8 | 48.4 | 58.2 | 58.9 |
CDPM | 42.6 | 43.8 | 47.9 | 58.2 | 59.5 |
Tab. 4 Experimental results of CDPM structure validity (mAP50)
模块 | 1shot | 2shot | 3shot | 5shot | 10shot |
---|---|---|---|---|---|
GAM | 39.1 | 34.2 | 39.1 | 52.3 | 54.4 |
LSKA-53 | 42.1 | 35.8 | 48.4 | 58.2 | 58.9 |
CDPM | 42.6 | 43.8 | 47.9 | 58.2 | 59.5 |
r | 1shot | 2shot | 3shot | 5shot | 10shot |
---|---|---|---|---|---|
1,2,5 | 40.2 | 39.2 | 47.9 | 59.6 | 58.5 |
1,3,8 | 43.9 | 46.5 | 50.1 | 60.4 | 60.5 |
1,5,14 | 40.3 | 34.1 | 45.6 | 54.4 | 59.8 |
1,3,5,8,14 | 44.1 | 46.9 | 48.4 | 61.2 | 62.6 |
Tab. 5 mAP50 comparison of various dilation rate combinations in CDPM structure
r | 1shot | 2shot | 3shot | 5shot | 10shot |
---|---|---|---|---|---|
1,2,5 | 40.2 | 39.2 | 47.9 | 59.6 | 58.5 |
1,3,8 | 43.9 | 46.5 | 50.1 | 60.4 | 60.5 |
1,5,14 | 40.3 | 34.1 | 45.6 | 54.4 | 59.8 |
1,3,5,8,14 | 44.1 | 46.9 | 48.4 | 61.2 | 62.6 |
[1] | 刘春磊,陈天恩,王聪,等. 小样本目标检测研究综述[J]. 计算机科学与探索, 2023, 17(1): 53-73. |
LIU C L, CHEN T E, WANG C, et al. Survey of few-shot object detection [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 53-73. | |
[2] | SUN B, LI B, CAI S, et al. FSCE: few-shot object detection via contrastive proposal encoding [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7348-7358. |
[3] | LI B, YANG B, LIU C, et al. Beyond max-margin: class margin equilibrium for few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7359-7368. |
[4] | WU A, HAN Y, ZHU L, et al. Universal-prototype enhancing for few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9547-9556. |
[5] | AGARWAL A, MAJEE A, SUBRAMANIAN A, et al. Attention guided cosine margin to overcome class-imbalance in few-shot road object detection [C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 221-230. |
[6] | HAN G, HUANG S, MA J, et al. Meta Faster R-CNN: towards accurate few-shot object detection with attentive feature alignment[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 780-789. |
[7] | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
[8] | CHEN H, WANG Y, WANG G, et al. LSTD: a low-shot transfer detector for object detection [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 2836-2843. |
[9] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. |
[10] | WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 9919-9928. |
[11] | WU J, LIU S, HUANG D, et al. Multi-scale positive sample refinement for few-shot object detection [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12361. Cham: Springer, 2020: 456-472. |
[12] | YANG Z, WANG Y, CHEN X, et al. Context-Transformer: tackling object confusion for few-shot detection [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 12653-12660. |
[13] | LI Y, ZHU H, CHENG Y, et al. Few-shot object detection via classification refinement and distractor retreatment [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 15390-15398. |
[14] | CHEN X, JIANG M, ZHAO Q. Leveraging bottom-up and top-down attention for few-shot object detection [EB/OL]. [2024-07-07]. . |
[15] | XU H, WANG X, SHAO F, et al. Few-shot object detection via sample processing [J]. IEEE Access, 2021, 9: 29207-29221. |
[16] | 李鸿天,史鑫昊,潘卫国,等. 融合多尺度和注意力机制的小样本目标检测[J]. 计算机应用, 2024, 44(5): 1437-1444. |
LI H T, SHI X H, PAN W G, et al. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. | |
[17] | 马梁,苟于涛,雷涛,等. 基于多尺度特征融合的遥感图像小目标检测[J]. 光电工程, 2022, 49(4): No.210363. |
MA L, GOU Y T, LEI T, et al. Small object detection based on multi-scale feature fusion using remote sensing images [J]. Opto-Electronic Engineering, 2022, 49(4): No.210363. | |
[18] | CHEN X, WANG Y, LIU J, et al. DID: disentangling-imprinting-distilling for continuous low-shot detection [J]. IEEE Transactions on Image Processing, 2020, 29: 7765-7778. |
[19] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
[20] | LIN T Y, DOLLÁR P, GIRSHICK R B, et al. Feature pyramid networks for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. |
[21] | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolution[EB/OL]. [2024-06-07]. . |
[22] | WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation [C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 1451-1460. |
[23] | KANG B, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8419-8428. |
[24] | LIU L, MA B, ZHANG Y, et al. AFD-Net: adaptive fully-dual network for few-shot object detection [C]// Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 2549-2557. |
[25] | HU H, BAI S, LI A, et al. Dense relation distillation with context-aware aggregation for few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10180-10189. |
[26] | QUAN J, GE B, CHEN L. Cross attention redistribution with contrastive learning for few shot object detection [J]. Displays, 2022, 72: No.102162. |
[27] | LEE H, LEE M, KWAK N. Few-shot object detection by attending to per-sample-prototype [C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 1101-1110. |
[28] | ZHU C, CHEN F, AHMED U, et al. Semantic relation reasoning for shot-stable few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8778-8787. |
[29] | GUO X, YANG H, WEI M, et al. Few-shot object detection via class encoding and multi-target decoding [J]. IET Cyber-Systems and Robotics, 2023, 5(2): No.e12088. |
[30] | LIU Y, SHAO Z, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions [EB/OL]. [2024-07-11].. |
[31] | LAU K W, PO L M, REHMAN Y A UR. Large separable kernel attention: rethinking the large kernel attention design in CNN [J]. Expert Systems with Applications, 2024, 236: No.121352. |
[1] | Chuang WANG, Lu YU, Jianwei CHEN, Cheng PAN, Wenbo DU. Review of open set domain adaptation [J]. Journal of Computer Applications, 2025, 45(9): 2727-2736. |
[2] | Wei ZHANG, Jiaxiang NIU, Jichao MA, Qiongxia SHEN. Chinese spelling correction model ReLM enhanced with deep semantic features [J]. Journal of Computer Applications, 2025, 45(8): 2484-2490. |
[3] | Yuyang SUN, Minjie ZHANG, Jie HU. Zero-shot dialogue state tracking domain transfer model based on semantic prefix-tuning [J]. Journal of Computer Applications, 2025, 45(7): 2221-2228. |
[4] | Haoyu LIU, Pengwei KONG, Yaoli WANG, Qing CHANG. Pedestrian detection algorithm based on multi-view information [J]. Journal of Computer Applications, 2025, 45(7): 2325-2332. |
[5] | Bo FENG, Haizheng YU, Hong BIAN. Domain adaptive semantic segmentation based on masking enhanced self-training [J]. Journal of Computer Applications, 2025, 45(7): 2132-2137. |
[6] | Meirong DING, Jinxin ZHUO, Yuwu LU, Qinglong LIU, Jicong LANG. Domain adaptation integrating environment label smoothing and nuclear norm discrepancy [J]. Journal of Computer Applications, 2025, 45(4): 1130-1138. |
[7] | Weichao DANG, Yinghao FAN, Gaimei GAO, Chunxia LIU. Weakly supervised action localization based on temporal and global contextual feature enhancement [J]. Journal of Computer Applications, 2025, 45(3): 963-971. |
[8] | Binhong XIE, Wanyin GAO, Wangdong LU, Yingjun ZHANG, Rui ZHANG. Dense object counting network with few-shot similarity matching feature enhancement [J]. Journal of Computer Applications, 2025, 45(2): 403-410. |
[9] | Benchen YANG, Haoran LI, Haibo JIN. Multi-focus image fusion network with cascade fusion and enhanced reconstruction [J]. Journal of Computer Applications, 2025, 45(2): 594-600. |
[10] | Chunxia LIU, Hanying XU, Gaimei GAO, Weichao DANG, Zilu LI. Smart contract vulnerability detection method based on echo state network [J]. Journal of Computer Applications, 2025, 45(1): 153-161. |
[11] | Feiyu ZHAI, Handa MA. Hybrid classical-quantum classification model based on DenseNet [J]. Journal of Computer Applications, 2024, 44(6): 1905-1910. |
[12] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. |
[13] | Wangjun SHI, Jing WANG, Xiaojun NING, Youfang LIN. Sleep stage classification model by meta transfer learning in few-shot scenarios [J]. Journal of Computer Applications, 2024, 44(5): 1445-1451. |
[14] | Jie WANG, Hua MENG. Image classification algorithm based on overall topological structure of point cloud [J]. Journal of Computer Applications, 2024, 44(4): 1107-1113. |
[15] | Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems [J]. Journal of Computer Applications, 2024, 44(4): 1158-1165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||