摘要点击排行

    一年内发表文章 |  两年内 |  三年内 |  全部

    当前位置: 两年内
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 基于深度学习的多模态医学图像分割综述
    窦猛, 陈哲彬, 王辛, 周继陶, 姚宇
    《计算机应用》唯一官方网站    2023, 43 (11): 3385-3395.   DOI: 10.11772/j.issn.1001-9081.2022101636
    摘要1925)   HTML95)    PDF (3904KB)(2657)    收藏

    多模态医学图像可以为临床医生提供靶区(如肿瘤、器官或组织)的丰富信息。然而,由于多模态图像之间相互独立且仅有互补性,如何有效融合多模态图像并进行分割仍是亟待解决的问题。传统的图像融合方法难以有效解决此问题,因此基于深度学习的多模态医学图像分割算法得到了广泛的研究。从原理、技术、问题及展望等方面对基于深度学习的多模态医学图像分割任务进行了综述。首先,介绍了深度学习与多模态医学图像分割的一般理论,包括深度学习与卷积神经网络(CNN)的基本原理与发展历程,以及多模态医学图像分割任务的重要性;其次,介绍了多模态医学图像分割的关键概念,包括数据维度、预处理、数据增强、损失函数以及后处理等;接着,对基于不同融合策略的多模态分割网络进行综述,对不同方式的融合策略进行分析;最后,对医学图像分割过程中常见的几个问题进行探讨,并对今后研究作了总结与展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    2. 基于改进YOLOv8的嵌入式道路裂缝检测算法
    耿焕同, 刘振宇, 蒋骏, 范子辰, 李嘉兴
    《计算机应用》唯一官方网站    2024, 44 (5): 1613-1618.   DOI: 10.11772/j.issn.1001-9081.2023050635
    摘要1777)   HTML71)    PDF (2002KB)(2946)    收藏

    在边缘端设备部署YOLOv8L模型进行道路裂缝检测可以实现较高的精度,但难以保证实时检测。针对此问题,提出一种可部署到边缘计算设备Jetson AGX Xavier上的基于改进YOLOv8模型的目标检测算法。首先,利用部分卷积设计Faster Block结构以替换YOLOv8 C2f模块中的Bottleneck结构,并将改进后的C2f模块记为C2f-Faster;其次,在YOLOv8主干网络中的每个C2f-Faster模块之后接一个SE(Squeeze-and-Excitation)通道注意力层,进一步提高检测的精度。在开源道路损害数据集RDD20(Road Damage Detection 20)上的实验结果表明:所提方法的平均F1得分为0.573,每秒检测帧数(FPS)为47,模型大小为55.5 MB,相较于GRDDC2020 (Global Road Damage Detection Challenge 2020)的SOTA(State-Of-The-Art)模型,F1得分提高了0.8个百分点,FPS提高了291.7%,模型大小减小了41.8%,实现了在边缘设备上对道路裂缝实时且准确的检测。

    图表 | 参考文献 | 相关文章 | 多维度评价
    3. 大语言模型的技术应用前景与风险挑战
    徐月梅, 胡玲, 赵佳艺, 杜宛泽, 王文清
    《计算机应用》唯一官方网站    2024, 44 (6): 1655-1662.   DOI: 10.11772/j.issn.1001-9081.2023060885
    摘要1337)   HTML106)    PDF (1142KB)(2318)    收藏

    针对大语言模型(LLM)技术的快速发展,剖析它的技术应用前景和风险挑战,对通用人工智能(AGI)的发展和治理有重要参考价值。首先,以Multi-BERT(Multilingual Bidirectional Encoder Representations from Transformers)、GPT(Generative Pre-trained Transformer)和ChatGPT(Chat Generative Pre-Trained Transformer)等语言模型为代表,综述LLM的发展脉络、核心技术和评估体系;其次,分析LLM现存的技术局限和安全风险;最后,提出LLM在技术上改进、政策上跟进的建议。分析指出作为发展阶段的LLM,现有模型存在非真实性及偏见性输出、实时自主学习能力欠缺,算力需求庞大,对数据质量和数量依赖性强,语言风格单一;存在数据隐私、信息安全和伦理等方面的安全风险。未来发展可从技术上继续改进,从“大规模”转向“轻量化”、从“单模态”走向“多模态”、从“通用”迈入“垂类”;从政策上实时跟进,实施有针对性的监管措施,规范应用和发展。

    图表 | 参考文献 | 相关文章 | 多维度评价
    4. 多模态知识图谱表示学习综述
    王春雷, 王肖, 刘凯
    《计算机应用》唯一官方网站    2024, 44 (1): 1-15.   DOI: 10.11772/j.issn.1001-9081.2023050583
    摘要1316)   HTML118)    PDF (3449KB)(5481)    收藏

    在综合对比传统知识图谱表示学习模型优缺点以及适用任务后,发现传统的单一模态知识图谱无法很好地表示知识。因此,如何利用文本、图片、视频、音频等多模态数据进行知识图谱表示学习成为一个重要的研究方向。同时,详细分析了常用的多模态知识图谱数据集,为相关研究人员提供数据支持。在此基础上,进一步讨论了文本、图片、视频、音频等多模态融合下的知识图谱表示学习模型,并对其中各种模型进行了总结和比较。最后,总结了多模态知识图谱表示学习如何改善经典应用,包括知识图谱补全、问答系统、多模态生成和推荐系统在实际应用中的效果,并对未来的研究工作进行了展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    5. YOLO算法及其在自动驾驶场景中目标检测综述
    邓亚平, 李迎江
    《计算机应用》唯一官方网站    2024, 44 (6): 1949-1958.   DOI: 10.11772/j.issn.1001-9081.2023060889
    摘要1296)   HTML42)    PDF (1175KB)(890)    收藏

    自动驾驶场景下的目标检测是计算机视觉中重要研究方向之一,确保自动驾驶汽车对物体进行实时准确的目标检测是研究重点。近年来,深度学习技术迅速发展并被广泛应用于自动驾驶领域中,极大促进了自动驾驶领域的进步。为此,针对YOLO(You Only Look Once)算法在自动驾驶领域中的目标检测研究现状,从以下4个方面分析。首先,总结单阶段YOLO系列检测算法思想及其改进方法,分析YOLO系列算法的优缺点;其次,论述YOLO算法在自动驾驶场景下目标检测中的应用,从交通车辆、行人和交通信号识别这3个方面分别阐述和总结研究现状及应用情况;此外,总结目标检测中常用的评价指标、目标检测数据集和自动驾驶场景数据集;最后,展望目标检测存在的问题和未来发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    6. 基于提示学习的小样本文本分类方法
    于碧辉, 蔡兴业, 魏靖烜
    《计算机应用》唯一官方网站    2023, 43 (9): 2735-2740.   DOI: 10.11772/j.issn.1001-9081.2022081295
    摘要969)   HTML78)    PDF (884KB)(896)    收藏

    文本分类任务通常依赖足量的标注数据,针对低资源场景下的分类模型在小样本上的过拟合问题,提出一种基于提示学习的小样本文本分类方法BERT-P-Tuning。首先,利用预训练模型BERT(Bidirectional Encoder Representations from Transformers)在标注样本上学习到最优的提示模板;然后,在每条样本中补充提示模板和空缺,将文本分类任务转化为完形填空任务;最后,通过预测空缺位置概率最高的词并结合它与标签之间的映射关系得到最终的标签。在公开数据集FewCLUE上的短文本分类任务上进行实验,实验结果表明,所提方法相较于基于BERT微调的方法在评价指标上有显著提高。所提方法在二分类任务上的准确率与F1值分别提升了25.2和26.7个百分点,在多分类任务上的准确率与F1值分别提升了6.6和8.0个百分点。相较于手动构建模板的PET(Pattern Exploiting Training)方法,所提方法在两个任务上的准确率分别提升了2.9和2.8个百分点,F1值分别提升了4.4和4.2个百分点,验证了预训练模型应用在小样本任务的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    7. 运动想象脑电信号的跨被试动态多域对抗学习方法
    曹铉, 罗天健
    《计算机应用》唯一官方网站    2024, 44 (2): 645-653.   DOI: 10.11772/j.issn.1001-9081.2023030286
    摘要869)   HTML16)    PDF (3364KB)(239)    收藏

    解码运动想象脑电(EEG)信号是构造脑机接口(BCI)的关键技术之一。然而,脑电样本采集成本高、个体差异大,且信号具有时变性强、低信噪比等特点,构建跨被试模式识别方法成为了研究的关键。为此,提出一种跨被试动态多域对抗学习方法。首先采用样本协方差对齐和全局域鉴别器适应样本集边缘分布,随后采用多个类别子域鉴别器适应样本集条件分布,并自适应学习多域鉴别器的对抗系数。基于动态多域对抗学习策略,所提出的动态多域对抗网络(DMDAN)模型可学习到被试域间有泛化能力的深度特征。在BCI Competition IV 2A和2B公开数据集上的实验结果表明,DMDAN模型提高了跨被试域不变特征的学习能力,与现有对抗学习方法DRDA(Deep Representation Domain Adaptation)相比,在数据集2A和数据集2B上的平均分类准确率分别提高了1.80和2.52个百分点。可见,所提出的DMDAN模型提升了跨被试运动想象脑电信号解码性能,在不同数据集上具有不错的泛化性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    8. 基于深度学习的RGB图像目标位姿估计综述
    王一, 谢杰, 程佳, 豆立伟
    《计算机应用》唯一官方网站    2023, 43 (8): 2546-2555.   DOI: 10.11772/j.issn.1001-9081.2022071022
    摘要834)   HTML37)    PDF (858KB)(623)    收藏

    6自由度(DoF)位姿估计是计算机视觉与机器人技术中的一项关键技术,它能从给定的输入图像中估计物体的6DoF位姿,即3DoF平移和3DoF旋转,已经成为机器人操作、自动驾驶、增强现实等领域中的一项至关重要的任务。首先,介绍了6DoF位姿的概念以及基于特征点对应、基于模板匹配、基于三维特征描述符等传统方法存在的问题;然后,以基于特征对应、基于像素投票、基于回归和面向多物体实例、面向合成数据、面向类别级的不同角度详细介绍了当前主流的基于深度学习的6DoF位姿估计算法,归纳整理了在位姿估计方面常用的数据集以及评价指标,并对部分算法进行了实验性能评价;最后,给出了当前位姿估计面临的挑战和未来的重点研究方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    9. 卷积神经网络中基于差分隐私的动量梯度下降算法
    张宇, 蔡英, 崔剑阳, 张猛, 范艳芳
    《计算机应用》唯一官方网站    2023, 43 (12): 3647-3653.   DOI: 10.11772/j.issn.1001-9081.2022121881
    摘要818)   HTML128)    PDF (1985KB)(714)    收藏

    针对卷积神经网络(CNN)模型的训练过程中,模型参数记忆数据部分特征导致的隐私泄露问题,提出一种CNN中基于差分隐私的动量梯度下降算法(DPGDM)。首先,在模型优化的反向传播过程中对梯度添加满足差分隐私的高斯噪声,并用加噪后的梯度值参与模型参数的更新过程,从而实现对模型整体的差分隐私保护;其次,为了减少引入差分隐私噪声对模型收敛速度的影响,设计学习率衰减策略,改进动量梯度下降算法;最后,为了降低噪声对模型准确率的影响,在模型优化过程中动态地调整噪声尺度的值,从而改变在每一轮迭代中需要对梯度加入的噪声量。实验结果表明,与DP-SGD (Differentially Private Stochastic Gradient Descent)相比,所提算法可以在隐私预算为0.3和0.5时,模型准确率分别提高约5和4个百分点。可见,所提算法提高了模型的可用性,并实现了对模型的隐私保护。

    图表 | 参考文献 | 相关文章 | 多维度评价
    10. 基于生成对抗网络的联邦学习中投毒攻击检测方案
    陈谦, 柴政, 王子龙, 陈嘉伟
    《计算机应用》唯一官方网站    2023, 43 (12): 3790-3798.   DOI: 10.11772/j.issn.1001-9081.2022121831
    摘要803)   HTML43)    PDF (2367KB)(1317)    收藏

    联邦学习(FL)是一种新兴的隐私保护机器学习(ML)范式,然而它的分布式的训练结构更易受到投毒攻击的威胁:攻击者通过向中央服务器上传投毒模型以污染全局模型,减缓全局模型收敛并降低全局模型精确度。针对上述问题,提出一种基于生成对抗网络(GAN)的投毒攻击检测方案。首先,将良性本地模型输入GAN产生检测样本;其次,使用生成的检测样本检测客户端上传的本地模型;最后,根据检测指标剔除投毒模型。同时,所提方案定义了F1值损失和精确度损失这两项检测指标检测投毒模型,将检测范围从单一类型的投毒攻击扩展至全部两种类型的投毒攻击;设计阈值判定方法处理误判问题,确保误判鲁棒性。实验结果表明,在MNIST和Fashion-MNIST数据集上,所提方案能够生成高质量检测样本,并有效检测与剔除投毒模型;与使用收集测试数据和使用生成测试数据但仅使用精确度作为检测指标的两种检测方案相比,所提方案的全局模型精确度提升了2.7~12.2个百分点。

    图表 | 参考文献 | 相关文章 | 多维度评价
    11. 基于深度强化学习的无人机集群协同作战决策方法
    赵琳, 吕科, 郭靖, 宏晨, 向贤财, 薛健, 王泳
    《计算机应用》唯一官方网站    2023, 43 (11): 3641-3646.   DOI: 10.11772/j.issn.1001-9081.2022101511
    摘要786)   HTML22)    PDF (2944KB)(1596)    收藏

    在无人机(UAV)集群攻击地面目标时,UAV集群将分为两个编队:主攻目标的打击型UAV集群和牵制敌方的辅助型UAV集群。当辅助型UAV集群选择激进进攻或保存实力这两种动作策略时,任务场景类似于公共物品博弈,此时合作者的收益小于背叛者。基于此,提出一种基于深度强化学习的UAV集群协同作战决策方法。首先,通过建立基于公共物品博弈的UAV集群作战模型,模拟智能化UAV集群在合作中个体与集体间的利益冲突问题;其次,利用多智能体深度确定性策略梯度(MADDPG)算法求解辅助UAV集群最合理的作战决策,从而以最小的损耗代价实现集群胜利。在不同数量UAV情况下进行训练并展开实验,实验结果表明,与IDQN(Independent Deep Q-Network)和ID3QN(Imitative Dueling Double Deep Q-Network)这两种算法的训练效果相比,所提算法的收敛性最好,且在4架辅助型UAV情况下胜率可达100%,在其他UAV数情况下也明显优于对比算法。

    图表 | 参考文献 | 相关文章 | 多维度评价
    12. 基于数据驱动的云边智能协同综述
    田鹏新, 司冠南, 安兆亮, 李建辛, 周风余
    《计算机应用》唯一官方网站    2023, 43 (10): 3162-3169.   DOI: 10.11772/j.issn.1001-9081.2022091418
    摘要779)   HTML46)    PDF (1772KB)(534)    收藏

    随着物联网(IoT)的快速发展,大量在传感器等边缘场景产生的数据需要传输至云节点处理,这带来了极大的传输成本和处理时延,而云边协同为这些问题提供了有效的解决方案。首先,在全面调查和分析云边协同发展过程的基础上,结合当前云边智能协同中的研究思路与进展,重点分析和讨论了云边架构中的数据采集与分析、计算迁移技术以及基于模型的智能优化技术;其次,分别从边缘端和云端深入分析了各种技术在云边智能协同中的作用及应用,并探讨了云边智能协同技术在现实中的应用场景;最后,指出了云边智能协同目前存在的挑战及未来的发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    13. 基于混合代码表示的源代码脆弱性检测
    张琨, 杨丰玉, 钟发, 曾广东, 周世健
    《计算机应用》唯一官方网站    2023, 43 (8): 2517-2526.   DOI: 10.11772/j.issn.1001-9081.2022071135
    摘要779)   HTML16)    PDF (1958KB)(452)    收藏

    软件脆弱性对网络与信息安全产生了极大的威胁,而脆弱性的根源在于软件源代码。因为现有的传统静态检测工具和基于深度学习的检测方法没有完整地表示代码特征,并且简单地使用词嵌入方法转换代码表示,所以检测结果准确率低,误报率高或漏报率高。因此,提出了一种基于混合代码表示的源代码脆弱性检测方法来解决代码表示不完整的问题,并提升检测性能。首先将源代码编译为中间表示(IR),并提取程序依赖图;然后基于数据流和控制流分析进行程序切片来得到结构化的特征,同时使用doc2vec嵌入节点语句得到非结构化的特征;接着使用图神经网络(GNN)对混合特征进行学习;最后使用训练好的GNN进行预测和分类。为了验证所提方法的有效性,在软件保证参考数据集(SARD)和真实世界数据集上进行了实验评估,检测结果的F1值分别达到了95.3%和89.6%。实验结果表明,所提方法有较好的脆弱性检测能力。

    图表 | 参考文献 | 相关文章 | 多维度评价
    14. 基于网络结构设计的图神经网络特征选择方法
    徐大鹏, 侯新民
    《计算机应用》唯一官方网站    2024, 44 (3): 663-670.   DOI: 10.11772/j.issn.1001-9081.2023030353
    摘要751)   HTML124)    PDF (1001KB)(1231)    收藏

    近年来,研究人员针对图神经网络(GNN)提出了许多改进的模型架构设计,推动了各种预测任务的性能提升。但大多数GNN变体在开始都认为节点的特征同等重要,而实际情况并非如此。针对这个问题,提出一种特征选择方法来改进现有模型,并为数据集选择出重要特征子集。所提方法由特征选择层和标签-特征单独映射两个组件构成。在特征选择层中使用Softmax归一化器和特征“软选择器”进行特征选择,在标签-特征单独映射思想下设计模型结构,为不同的标签选择对应的相关特征子集,并将多个相关特征子集作集合并运算得到最终数据集的重要特征子集。选取图注意力网络(GAT)和GATv2模型为基准模型,将算法应用到基准模型中得到新模型。实验结果表明,所提模型在6个数据集上执行节点分类任务时,准确率相较于基准模型提升了0.83%~8.79%;新模型也为6个数据集选择了对应的重要特征子集,这些重要特征子集的特征数量占各自数据集总特征数的3.94%~12.86%,将重要特征子集作为基准模型的新输入后仍然获得了95%以上的准确率(使用了所有特征),即在保证准确率的基础上减小了模型的规模。可见,所提方法能够提高节点分类准确率,并有效地为数据集选择对应的重要特征子集。

    图表 | 参考文献 | 相关文章 | 多维度评价
    15. 大语言模型综述与展望
    秦小林, 古徐, 李弟诚, 徐海文
    《计算机应用》唯一官方网站    2025, 45 (3): 685-696.   DOI: 10.11772/j.issn.1001-9081.2025010128
    摘要700)   HTML58)    PDF (2035KB)(1034)    收藏

    大语言模型(LLM)是由具有大量参数(通常数十亿个权重或更多)的人工神经网络组成的一类语言模型,使用自监督学习或半监督学习对大量未标记文本进行训练,是当前生成式人工智能(AI)技术的核心。与传统语言模型相比,LLM通过大量的算力、参数和数据支持,展现出更强的语言理解与生成能力,广泛应用于机器翻译、问答系统、对话生成等众多任务中并表现卓越。现有的综述大多侧重于LLM的理论架构与训练方法,对LLM的产业级应用实践及技术生态演进的系统性探讨仍显不足。因此,在介绍LLM的基础架构、训练技术及发展历程的基础上,分析当前通用的LLM关键技术和以LLM为底座的先进融合技术。通过归纳总结现有研究,进一步阐述LLM在实际应用中面临的挑战,包括数据偏差、模型幻觉和计算资源消耗等问题,并对LLM的持续发展趋势进行展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    16. 基于Transformer-CNN的轻量级图像超分辨率重建网络
    陈豪, 夏振平, 程成, 林李兴, 张博文
    《计算机应用》唯一官方网站    2024, 44 (1): 292-299.   DOI: 10.11772/j.issn.1001-9081.2023010048
    摘要683)   HTML26)    PDF (1855KB)(401)    收藏

    针对现有超分辨率重建网络具有较高的计算复杂度和存在大量内存消耗的问题,提出了一种基于Transformer-CNN的轻量级图像超分辨率重建网络,使超分辨率重建网络更适合应用于移动平台等嵌入式终端。首先,提出了一个基于Transformer-CNN的混合模块,从而增强网络捕获局部-全局深度特征的能力;其次,提出了一个改进的倒置残差块来特别关注高频区域的特征,以提升特征提取能力和减少推理时间;最后,在探索激活函数的最佳选择后,采用GELU (Gaussian Error Linear Unit)激活函数来进一步提高网络性能。实验结果表明,所提网络可以在图像超分辨率性能和网络复杂度之间取得很好的平衡,而且在基准数据集Urban100上4倍超分辨率的推理速度达到91 frame/s,比优秀网络SwinIR (Image Restoration using Swin transformer)快11倍,表明所提网络能够高效地重建图像的纹理和细节,并减少大量的推理时间。

    图表 | 参考文献 | 相关文章 | 多维度评价
    17. 不完整多视图聚类综述
    董瑶, 付怡雪, 董永峰, 史进, 陈晨
    《计算机应用》唯一官方网站    2024, 44 (6): 1673-1682.   DOI: 10.11772/j.issn.1001-9081.2023060813
    摘要675)   HTML19)    PDF (2050KB)(921)    收藏

    多视图聚类是近年来图数据挖掘领域的研究热点。由于数据采集技术的限制或人为因素等原因常导致视图或样本缺失问题。降低多视图的不完整性对聚类效果的影响是多视图聚类目前面临的重大挑战。因此,综合研究不完整多视图聚类(IMC)近年的发展具有重要的理论意义和实践价值。首先,归纳分析不完整多视图数据缺失类型;其次,详细比较基于多核学习(MKL)、矩阵分解(MF)学习、深度学习和图学习这4类IMC方法,分析代表性方法的技术特点和区别;再次,从数据集类型、视图和类别数量、应用领域等角度总结22个公开不完整多视图数据集;继次,总结评价指标,并系统分析现有不完整多视图聚类方法在同构和异构数据集上的性能表现;最后,归纳分析不完整多视图聚类目前存在的问题、未来的发展方向和现有应用领域。

    图表 | 参考文献 | 相关文章 | 多维度评价
    18. 融合提示知识的方面级情感分析方法
    张心月, 刘蓉, 魏驰宇, 方可
    《计算机应用》唯一官方网站    2023, 43 (9): 2753-2759.   DOI: 10.11772/j.issn.1001-9081.2022091347
    摘要660)   HTML28)    PDF (1699KB)(252)    收藏

    针对基于预训练模型的方面级情感分析普遍使用端到端框架,存在上下游阶段任务不一致、难以有效建模方面词和上下文之间关系的问题,提出一种融合提示知识的方面级情感分析方法。首先基于Prompt机制构造提示文本,将该提示文本与原始句子和方面词进行拼接,并把得到的结果作为预训练模型BERT(Bidirectional Encoder Representation from Transformers)的输入,以有效捕获方面词和上下文之间的语义联系,同时提升模型对情感分析任务的感知能力;然后构建情感标签词表,并将它融入情感标签词映射层,以减小模型的搜索空间,使预训练模型获取标签词表中丰富的语义知识,并增强模型的学习能力。实验结果表明,所提方法在SemEval2014 Task4数据集的Restaurant、Laptop两个领域数据集和ChnSentiCorp数据集上的F1值分别达到了77.42%、75.20%、94.89%,与Glove-TextCNN、P-tuning等主流方面级情感分析方法相比提高了0.65~10.71、1.02~9.58与0.83~6.40个百分点,验证了所提方法对方面级情感分析的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    19. 基于孪生网络的小样本目标检测算法
    姜钧舰, 刘达维, 刘逸凡, 任酉贵, 赵志滨
    《计算机应用》唯一官方网站    2023, 43 (8): 2325-2329.   DOI: 10.11772/j.issn.1001-9081.2022121865
    摘要656)   HTML51)    PDF (1472KB)(1644)    收藏

    基于深度学习的目标检测算法如YOLO(You Only Look Once)和Faster R-CNN(Faster Region-Convolutional Neural Network)需要大量训练数据以保证模型的精度,而在很多场景下获取数据以及标注数据的成本较高;并且由于缺少海量的训练数据,导致检测的范围受限。针对以上问题,提出了一种基于孪生网络的小样本目标检测算法(SiamDet),旨在使用少量标注图像训练具有一定泛化能力的目标检测模型。首先,提出了基于深度可分离卷积的孪生网络,并使用深度可分离卷积设计了特征提取网络ResNet-DW,从而解决了样本不充足带来的过拟合问题;其次,基于孪生网络,提出了目标检测算法SiamDet,并在ResNet-DW的基础上,引入区域建议网络(RPN)来定位感兴趣目标;然后,引入二值交叉熵损失进行训练,并使用对比训练策略,从而增加了类别之间的区分度。实验结果表明,SiamDet在小样本条件下具有良好的目标检测能力,且相较于次优的算法DeFRCN(Decoupled Faster R-CNN),SiamDet在MS-COCO数据集20-way 2-shot和PASCAL VOC数据集5-way 5-shot上的AP50分别增加了4.1%和2.6%。

    图表 | 参考文献 | 相关文章 | 多维度评价
    20. 深度融合多视图聚类网络
    何子仪, 杨燕, 张熠玲
    《计算机应用》唯一官方网站    2023, 43 (9): 2651-2656.   DOI: 10.11772/j.issn.1001-9081.2022091394
    摘要656)   HTML58)    PDF (1074KB)(405)    收藏

    现有的深度多视图聚类方法存在以下缺点:1)在对单一视图进行特征提取时,只考虑了样本的属性信息或结构信息,而没有将二者进行融合,导致提取到的特征不能充分表示原始数据的潜在结构;2)将特征提取与聚类划分为两个独立的过程,没有建立两者间的联系,因此无法利用聚类过程优化特征提取过程。针对以上问题,提出一种深度融合多视图聚类网络(DFMCN)。首先,结合自编码器和图卷积自编码器融合样本的属性信息和结构信息,获取每个视图的嵌入空间;然后,通过加权融合获取融合视图嵌入空间并在此空间中进行聚类,并且在聚类过程中采用双层自监督机制优化特征提取过程。在FM(Fashion-MNIST)、HW(HandWritten numerals)、YTF(YouTube Face)数据集上的实验结果表明:DFMCN的准确率高于所有对比方法;在FM数据集上,DFMCN的准确率比次优的CMSC-DCCA(Cross-Modal Subspace Clustering via Deep Canonical Correlation Analysis)方法提高了1.80个百分点,标准化互信息(NMI)高于除CMSC-DCCA和DMSC(Deep Multimodal Subspace Clustering networks)的所有方法1.26~14.84个百分点。实验结果验证了所提方法的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    21. 超图应用方法综述:问题、进展与挑战
    曾蠡, 杨婧如, 黄罡, 景翔, 罗超然
    《计算机应用》唯一官方网站    2024, 44 (11): 3315-3326.   DOI: 10.11772/j.issn.1001-9081.2023111629
    摘要644)   HTML25)    PDF (795KB)(419)    收藏

    超图是图的泛化,相较于普通图,它在复杂关系的高阶特征表达上具有显著优势。作为一种相对较新的数据结构,超图在应用领域正在发挥越来越大的作用,研究者采用超图模型及算法对现实世界中的具体问题进行建模、求解,有效地提升了解决问题的效率及质量。现有对超图的综述更多侧重于解决超图本身问题的理论及技术,缺乏对超图在具体应用场景下的建模及求解方法的归纳总结。为此,在总结介绍超图的一些基础概念后,分析了超图在各个主流应用场景下的应用方法、技术、共性问题及解决方案;通过对现有工作的归纳总结,阐述了超图运用于现实问题中仍然存在的一些问题与障碍;最后,对超图应用的未来研究方向进行了展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    22. 物联网中结合计算卸载和区块链的综述
    门瑞, 樊书嘉, 阿喜达, 杜邵昱, 樊秀梅
    《计算机应用》唯一官方网站    2023, 43 (10): 3008-3016.   DOI: 10.11772/j.issn.1001-9081.2022091466
    摘要616)   HTML36)    PDF (882KB)(320)    收藏

    随着移动通信技术的快速发展和智能终端的普及,将终端设备的计算密集型任务卸载至边缘服务器能够解决终端设备算力不足的问题。然而,计算卸载技术分布式的属性使终端设备和边缘服务器面临较大的安全隐患;同时,区块链技术能为计算卸载系统提供安全的资源交易环境。以上两个技术的结合可以解决物联网中的资源不足和安全问题,因此对物联网中计算卸载和区块链技术结合应用的研究成果进行综述。首先,分析了计算卸载技术和区块链技术结合的应用场景和系统功能;其次,归纳了区块链技术在计算卸载系统中解决的主要问题和使用的关键技术,并分类总结了区块链系统中的计算卸载策略的制定方式、优化目标及优化算法;最后,提出了二者结合使用中存在的问题,并展望了未来的发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    23. 基于Transformer的视觉目标跟踪方法综述
    孙子文, 钱立志, 杨传栋, 高一博, 陆庆阳, 袁广林
    《计算机应用》唯一官方网站    2024, 44 (5): 1644-1654.   DOI: 10.11772/j.issn.1001-9081.2023060796
    摘要605)   HTML22)    PDF (1615KB)(1580)    收藏

    视觉目标跟踪是计算机视觉中的重要任务之一,为实现高性能的目标跟踪,近年来提出了大量的目标跟踪方法,其中基于Transformer的目标跟踪方法由于具有全局建模和联系上下文的能力,是目前视觉目标跟踪领域研究的热点。首先,根据网络结构的不同对基于Transformer的视觉目标跟踪方法进行分类,概述相关原理和模型改进的关键技术,总结不同网络结构的优缺点;其次,对这类方法在公开数据集上的实验结果进行对比,分析网络结构对性能的影响,其中MixViT-L(ConvMAE)在LaSOT和TrackingNet上跟踪成功率分别达到了73.3%和86.1%,说明基于纯Transformer两段式架构的目标跟踪方法具有更优的性能和更广的发展前景;最后,对方法当前存在的网络结构复杂、参数量大、训练要求高和边缘设备使用难度大等不足进行总结,并对今后的研究重点进行展望,通过与模型压缩、自监督学习以及Transformer可解释性分析相结合,可为基于Transformer的视觉目标跟踪提出更多可行的解决方案。

    图表 | 参考文献 | 相关文章 | 多维度评价
    24. 融合遗忘因素与记忆门的图神经网络知识追踪模型
    郑浩东, 马华, 谢颖超, 唐文胜
    《计算机应用》唯一官方网站    2023, 43 (9): 2747-2752.   DOI: 10.11772/j.issn.1001-9081.2022081184
    摘要599)   HTML22)    PDF (1266KB)(342)    收藏

    知识追踪任务根据学生历史学习数据实时诊断学生的认知状态,并预测他未来的答题表现。为准确建模知识追踪中的遗忘行为和答题序列的时序特征,提出一种融合遗忘因素与记忆门的图神经网络知识追踪(GKT-FM)模型。首先,GKT-FM模型通过历史答题记录计算知识点相关性,构建知识图;其次,采用图神经网络(GNN)建模学生的认知状态,综合考虑7个影响遗忘行为的特征;然后,以记忆门结构建模学生答题序列中的时序特征,重构基于GNN的知识追踪更新过程;最后,融合遗忘因素和时序特征得到预测结果。在公开数据集ASSISTments2009和KDDCup2010上的实验结果表明,相较于GKT(Graph-based Knowledge Tracing)模型,GKT-FM模型的平均曲线下面积(AUC)分别提升了6.9%和9.5%,平均精度(ACC)分别提升了5.3%和6.7%,可见,GKT-FM模型能更好地建模学生的遗忘行为、追踪学生的认知状态。

    图表 | 参考文献 | 相关文章 | 多维度评价
    25. 横向联邦学习中差分隐私聚类算法
    徐雪冉, 杨庚, 黄喻先
    《计算机应用》唯一官方网站    2024, 44 (1): 217-222.   DOI: 10.11772/j.issn.1001-9081.2023010019
    摘要593)   HTML16)    PDF (1418KB)(298)    收藏

    聚类分析能够挖掘出数据间隐藏的内在联系并对数据进行多指标划分,从而促进个性化和精细化运营。然而,数据孤岛造成的数据碎片化和孤立化严重影响了聚类分析的应用效果。为了解决数据孤岛问题的同时保护相关数据隐私,提出本地均分扰动联邦K-means算法(ELFedKmeans)。针对横向联邦学习模式,设计了一种基于网格的初始簇心选择方法和一种隐私预算分配方案。在ELFedKmeans算法中,各站点联合协商随机种子,以较小的通信代价生成相同的随机噪声,保护了本地数据的隐私。通过理论分析证明了该算法满足差分隐私保护,并将该算法与本地差分隐私K-means(LDPKmeans)算法和混合型隐私保护K-means (HPKmeans)算法在不同的数据集上进行了对比实验分析。实验结果表明,随着隐私预算不断增大,三个算法的F-measure值均逐渐升高;误差平方和(SSE)均逐渐减小。从整体上看,ELFedKmeans算法的F-measure值比LDPKmeans算法和HPKmeans算法分别高了1.794 5%~57.066 3%和21.245 2%~132.048 8%;ELFedKmeans算法的Log(SSE)值比LDPKmeans算法和HPKmeans算法分别减少了1.204 2%~12.894 6%和5.617 5%~27.575 2%。在相同的隐私预算下,ELFedKmeans算法在聚类质量和可用性指标上优于对比算法。

    图表 | 参考文献 | 相关文章 | 多维度评价
    26. 基于机器视觉的水产养殖计数研究综述
    张涵钰, 李振波, 李蔚然, 杨普
    《计算机应用》唯一官方网站    2023, 43 (9): 2970-2982.   DOI: 10.11772/j.issn.1001-9081.2022081261
    摘要591)   HTML29)    PDF (1320KB)(314)    收藏

    养殖计数是水产养殖过程中的重要环节,计数结果为水产动物的饲料投喂、养殖密度调整和经济效益估算等方面提供重要依据。针对传统人工计数方法耗时费力且易造成较大误差的问题,大量基于机器视觉的方法与应用被提出,极大地推动了水产品无损计数的发展。为深入了解基于机器视觉的水产养殖计数研究,整理和分析了至今三十多年来国内外的相关文献。首先,从数据采集方面对水产养殖计数展开综述性介绍,并对机器视觉所需数据的获取方法进行概括;其次,从传统机器视觉和深度学习两方面对水产养殖计数方法进行分析与总结;然后,对各种计数方法在不同养殖环境的实际应用进行对比分析;最后,从数据、方法和应用三方面总结了水产养殖计数研究的发展难点,并提出了计数方法研究和装备应用的未来发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    27. 知识图谱在装备故障诊断领域的研究与应用综述
    武杰, 张安思, 吴茂东, 张仪宗, 王从宝
    《计算机应用》唯一官方网站    2024, 44 (9): 2651-2659.   DOI: 10.11772/j.issn.1001-9081.2023091280
    摘要589)   HTML53)    PDF (2858KB)(1570)    收藏

    知识图谱从装备故障诊断数据中提取有用的知识,通过(实体,关系,实体)的三元组方式,对复杂装备的故障诊断信息进行有效管理,实现装备故障的快速诊断。首先,介绍装备故障诊断知识图谱的相关概念,分析装备故障诊断领域知识图谱的构建框架;其次,归纳国内外装备故障诊断知识图谱的知识抽取、知识融合以及知识推理等几个关键技术的研究现状;最后,对目前装备故障诊断知识图谱应用进行总结,提出该领域知识图谱构建的不足和面临的挑战,并对未来装备故障诊断领域提供一些新的思路。

    图表 | 参考文献 | 相关文章 | 多维度评价
    28. 基于深度图神经网络的协同推荐算法
    潘润超, 虞启山, 熊泓霏, 刘智慧
    《计算机应用》唯一官方网站    2023, 43 (9): 2741-2746.   DOI: 10.11772/j.issn.1001-9081.2022091361
    摘要584)   HTML53)    PDF (1539KB)(421)    收藏

    针对现有基于图神经网络(GNN)的推荐算法面临的过平滑的问题,提出一种基于深度GNN的协同过滤推荐算法Deep NGCF(Deep Neural Graph Collaborative Filtering)。该算法在GNN中引入初始残差连接和恒等映射,避免了GNN进行多次图卷积运算后陷入过平滑。首先,通过用户和项目的交互历史得到它们的初始嵌入;其次,在聚合传播层利用初始残差连接和恒等映射得到用户和项目的不同阶协同信号;最后,对所有协同信号进行线性表示以得到预测评分。此外,在初始残差连接和恒等映射中设置比重进行调节,从而进一步提高模型的灵活性和推荐性能。为验证Deep NGCF算法的可行性和有效性,在Gowalla、Yelp-2018与Amazon-Book数据集上进行实验。实验结果表明,相较于图卷积矩阵补全(GCMC)、神经图协同过滤(NGCF)等现有的GNN推荐算法,Deep NGCF算法取得了最高的召回率和归一化折损累计增益(NDCG),验证了所提算法的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    29. 从U-Net到Transformer: 深度模型在医学图像分割中的应用综述
    张玮智 于谦 苏金善 乎西旦·居马洪 林玲
    《计算机应用》唯一官方网站    DOI: 10.11772/j.issn.1001-9081.2023071059
    预出版日期: 2023-10-26

    30. 基于改进的YOLOv5的大坝表面病害检测算法
    段升位, 程欣宇, 王浩舟, 王飞
    《计算机应用》唯一官方网站    2023, 43 (8): 2619-2629.   DOI: 10.11772/j.issn.1001-9081.2022081207
    摘要568)   HTML33)    PDF (7862KB)(353)    收藏

    针对当前水利大坝主要依靠人工现场巡视,运营成本高且效率低的问题,提出一种基于YOLOv5的改进检测算法。首先,采用改进的多尺度的视觉Transformer结构改进主干网络,并利用多尺度Transformer结构关联的多尺度全局信息和卷积神经网络(CNN)提取的局部信息来构建聚合特征,从而充分利用多尺度的语义信息和位置信息来提高网络的特征提取能力。然后,在网络的每个特征检测层前加入同位注意力机制,以在图像的高度和宽度方向分别进行特征编码,再用编码后的特征构建特征图上像素的长距离关联,从而增强网络在复杂环境中的目标定位能力。接着,改进了网络正负训练样本的采样算法,通过构建先验框与真实框的平均契合度和差异度筛选样本来辅助候选正样本与自身形状相近的先验框产生响应,以帮助网络更快、更好地收敛,从而提升网络的整体性能和网络泛化性。最后,针对应用需求对网络进行了轻量化,并通过对网络结构剪枝和结构重参数化优化网络结构。实验结果表明:在当前采用的大坝病害数据上,对比原始YOLOv5s算法,改进后的网络mAP@0.5提升了10.5个百分点,mAP@0.5:0.95提高了17.3个百分点;轻量化后的网络对比轻量化之前的网络的参数量和计算量分别降低了24%和13%,检测速度提升了42%,满足当前应用场景下病害检测精度和速度的要求。

    图表 | 参考文献 | 相关文章 | 多维度评价
    31. 基于脑电信号的认知功能障碍识别与分类进展综述
    张军鹏, 施玉杰, 蒋睿, 董静静, 邱昌建
    《计算机应用》唯一官方网站    2023, 43 (10): 3297-3308.   DOI: 10.11772/j.issn.1001-9081.2022101471
    摘要559)   HTML23)    PDF (1199KB)(570)    收藏

    认知功能障碍的早期检测和及时干预对减缓病情发展至关重要。脑电(EEG)信号具有时间分辨率高、易采集等优点,目前已成为研究认知疾病生物标志物的重要工具。相较于传统的生物标志物识别方法,机器学习方法对于基于EEG信号的认知功能障碍的识别分类的准确率更高,稳定性更好。对于近三年基于EEG信号的认知功能障碍识别分类的相关研究,首先,从认知功能障碍识别分类中常用的时域、频域、时频域结合、非线性动力学、功能连接和脑网络这五类EEG特征出发,寻找更具代表性的EEG特征;其次,总结目前使用较多的支持向量机(SVM)、线性判别分析(LDA)、K-近邻(KNN)和人工神经网络(ANN)等机器学习和深度学习分类方法和这些方法的性能;最后,分析各类研究中目前存在的问题,并展望此领域未来的研究方向,从而为后续基于EEG信号的认知功能障碍识别分类的研究提供参考。

    图表 | 参考文献 | 相关文章 | 多维度评价
    32. 基于新一代神威超算的量子计算模拟器加速和优化
    史新民, 刘勇, 陈垚键, 宋佳伟, 刘鑫
    《计算机应用》唯一官方网站    2023, 43 (8): 2486-2492.   DOI: 10.11772/j.issn.1001-9081.2022091456
    摘要559)   HTML62)    PDF (2000KB)(828)    收藏

    针对量子硬件规模逐步扩大、当下量子计算经典模拟速度不高的问题,提出了基于神威超算量子模拟器的两种优化方法。首先,通过改进张量转置策略和计算策略重新构建了张量收缩算子库SWTT,从而提高了部分张量收缩的计算内核效率并减少了冗余访存;其次,通过提高数据局部性的收缩路径调整方法实现了路径计算复杂度和计算效率之间的均衡。测试结果表明,该算子库改进方法可将“悬铃木”量子霸权电路模拟效率提升5.4%,单步张量收缩效率最高提升49.7倍;该路径调整方法可在路径计算复杂度膨胀2倍条件下提升约4倍的浮点效率。两种优化方法使神威超算整机模拟谷歌53量子比特20层量子芯片随机电路百万振幅采样的单精度和混合精度浮点运算效率分别从3.98%和1.69%提升至18.48%和7.42%,理论估计模拟时间从单精度的470 s降至226 s,混合精度的304 s降至134 s,证明两种方法大幅提高了量子计算模拟速度。

    图表 | 参考文献 | 相关文章 | 多维度评价
    33. 优化场景视角下的进化多任务优化综述
    赵佳伟, 陈雪峰, 冯亮, 候亚庆, 朱泽轩, Yew‑Soon Ong
    《计算机应用》唯一官方网站    2024, 44 (5): 1325-1337.   DOI: 10.11772/j.issn.1001-9081.2024020208
    摘要558)   HTML74)    PDF (1383KB)(2232)    收藏

    随着优化问题变得日益复杂,传统的进化算法由于计算成本高昂和适用性有限而面临挑战。为了克服这些挑战,基于知识迁移的进化多任务优化(EMTO)算法应运而生,它的核心思想是通过跨任务的知识共享,同时解决多个优化问题,旨在提高进化算法在应对复杂优化场景的效率。全面总结了当前进化多任务优化研究的进展,与已有综述文章相比,从不同的研究视角进行深入探讨,并指出了现有文献中对优化场景视角分析的缺失。鉴于此,从优化问题的应用场景出发,对适用于进化多任务优化的场景及其基本解决策略进行了系统性的阐述,以帮助研究人员准确地根据具体应用需求选择合适的研究方法。此外,深入讨论进化多任务优化当前面临的挑战和未来的研究方向,旨在为未来的研究提供指导和启示。

    图表 | 参考文献 | 相关文章 | 多维度评价
    34. 面向热点新闻事件的层次化故事脉络生成方法
    刘东, 林川, 任丽娜, 黄瑞章
    《计算机应用》唯一官方网站    2023, 43 (8): 2376-2381.   DOI: 10.11772/j.issn.1001-9081.2022091377
    摘要554)   HTML25)    PDF (1333KB)(363)    收藏

    热点新闻事件的发展十分丰富,各个阶段的发展都有其独特的叙述,并且随着事件的发展呈现出层次化故事脉络演化的趋势。针对现有故事脉络生成方法存在脉络可解释性不佳以及缺乏层次性的问题,提出一种面向热点新闻事件的层次化故事脉络生成方法(HSGM)。首先,采用改进热词算法来挑选主干种子事件,以构建主干脉络;其次,挑选分支事件热词以增强分支可解释性;然后,在分支脉络中采用融合热词关联度与动态时间惩罚的脉络连贯度挑选策略来增强父子事件的连接,以构建层次化热词,进而构建多层次故事脉络;此外,考虑到热点新闻事件存在潜伏期,在脉络构建过程加入孵化池以解决因热度不够所产生的初始事件被忽略问题。在两个自建真实数据集上进行实验的结果表明,在事件追踪过程中,与分别基于singlePass和基于k-means的方法相比,HSGM的F值分别高出了4.51%、6.41%和20.71%、13.01%;而在脉络构建过程中,与Story Forest和Story Graph相比,HSGM在两个自建数据集上的准确性、可理解性、完整性方面表现良好。

    图表 | 参考文献 | 相关文章 | 多维度评价
    35. 加密数字货币监管技术研究综述
    王佳鑫, 颜嘉麒, 毛谦昂
    《计算机应用》唯一官方网站    2023, 43 (10): 2983-2995.   DOI: 10.11772/j.issn.1001-9081.2022111694
    摘要551)   HTML67)    PDF (911KB)(2229)    收藏

    借助区块链等新兴技术,加密数字货币呈现去中心化、自治化、跨界化的特点。研究加密数字货币的监管技术不仅有助于打击基于加密数字货币的犯罪活动,而且可以为区块链技术在其他领域的扩展提供可行的监管方案。首先,基于加密数字货币的应用特点,定义并阐述了加密数字货币产生、兑换和流通(GEC)周期理论;其次,详细分析了国内外频发的基于加密数字货币的犯罪事件,并重点介绍了加密数字货币在每个周期中的安全监管技术的研究现状;最后,总结了加密数字货币的监管平台生态体系以及监管技术现在面临的挑战,并展望了未来加密数字货币监管的研究方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    36. 融合多Prompt模板的零样本关系抽取模型
    许亮, 张春, 张宁, 田雪涛
    《计算机应用》唯一官方网站    2023, 43 (12): 3668-3675.   DOI: 10.11772/j.issn.1001-9081.2022121869
    摘要546)   HTML42)    PDF (1768KB)(843)    收藏

    Prompt范式被广泛应用于零样本的自然语言处理(NLP)任务中,但是现有基于Prompt范式的零样本关系抽取(RE)模型存在答案空间映射难构造与模板选择依赖人工的问题,无法取得较好的效果。针对这些问题,提出一种融合多Prompt模板的零样本RE模型。首先,将零样本RE任务定义为掩码语言模型(MLM)任务,舍弃答案空间映射的构造,将模板输出的词与关系描述文本在词向量空间中进行比较,以此判断关系类别;其次,引入待抽取关系类别的描述文本的词性作为特征,学习该特征与各个模板之间的权重;最后,利用该权重融合多个模板输出的结果,以此减少人工选取的Prompt模板引起的性能损失。在FewRel(Few-shot Relation extraction dataset)和TACRED(Text Analysis Conference Relation Extraction Dataset)这两个数据集上的实验结果显示,与目前最优的模型RelationPrompt相比,所提模型在不同数据资源设置下,F1值分别提升了1.48~19.84个百分点和15.27~15.75个百分点。可见,所提模型在零样本RE任务上取得了显著的效果提升。

    图表 | 参考文献 | 相关文章 | 多维度评价
    37. 深度神经网络平均场理论综述
    颜梦玫, 杨冬平
    《计算机应用》唯一官方网站    2024, 44 (2): 331-343.   DOI: 10.11772/j.issn.1001-9081.2023020166
    摘要546)   HTML59)    PDF (1848KB)(2333)    收藏

    平均场理论(MFT)为理解深度神经网络(DNN)的运行机制提供了非常深刻的见解,可以从理论上指导深度学习的工程设计。近年来,越来越多的研究人员开始投入DNN的理论研究,特别是基于MFT的一系列工作引起人们的广泛关注。为此,对深度神经网络平均场理论相关的研究内容进行综述,主要从初始化、训练过程和泛化性能这三个基本方面介绍最新的理论研究成果。在此基础上,介绍了混沌边缘和动力等距初始化的相关概念、相关特性和具体应用,分析了过参数网络以及相关等价网络的训练特性,并对不同网络架构的泛化性能进行理论分析,体现了平均场理论是理解深度神经网络机理的非常重要的基本理论方法。最后,总结了深度神经网络中初始、训练和泛化阶段的平均场理论面临的主要挑战和未来研究方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    38. 基于改进YOLOv8的水下目标检测算法
    李大海, 李冰涛, 王振东
    《计算机应用》唯一官方网站    2024, 44 (11): 3610-3616.   DOI: 10.11772/j.issn.1001-9081.2023111550
    摘要545)   HTML19)    PDF (1637KB)(501)    收藏

    由于水下生物的特性,水下图像中存在较多难以检测的小目标,且目标之间经常相互遮挡,而水下环境中的光线吸收和散射也会造成水下图像的颜色偏移和模糊。针对上述问题,提出水下目标检测算法WCA-YOLOv8。首先,设计特征融合模块(FFM),增强对空间维度信息的关注,提升对模糊和颜色偏移目标的识别能力;其次,加入FCA(FReLU Coordinate Attention)模块,增强对相互重叠、遮挡水下目标的特征提取能力;再次,为了提高模型对水下小目标的检测性能,将完整交并比(CIoU)损失函数替换为WIoU v3(Wise-IoU version 3)损失函数;最后,设计下采样增强模块(DEM),使特征提取过程中保存的上下文信息更完整,改善水下目标检测的性能。RUOD和URPC数据集上的实验结果表明,WCA-YOLOv8的检测平均精度均值(mAP0.5)分别为75.8%和88.6%,检测速度分别为60 frame/s和57 frame/s。与其他前沿的水下物体检测算法相比,WCA-YOLOv8不仅能够获得更高的检测准确性,还可达到更快的检测速度。

    图表 | 参考文献 | 相关文章 | 多维度评价
    39. 区块链3.0的发展、技术与应用
    方鹏, 赵凡, 王保全, 王轶, 蒋同海
    《计算机应用》唯一官方网站    2024, 44 (12): 3647-3657.   DOI: 10.11772/j.issn.1001-9081.2023121826
    摘要535)   HTML39)    PDF (2294KB)(342)    收藏

    区块链3.0是区块链技术发展的第3阶段,也是构建价值互联网的内核,它在分片、跨链以及隐私保护等方面的创新使它具有广泛的应用场景和研究价值,受到学术界和产业界相关人士的高度重视。针对区块链3.0的发展、技术与应用,调研并综述近5年国内外关于区块链3.0的相关文献。首先,介绍区块链的基本理论和技术特点,为深入了解区块链的研究进展奠定基础;其次,根据区块链技术随时间变化的演进趋势,阐述区块链3.0的发展历程和各个关键的发展时间节点,并给出以分片和侧链技术为基准点划分区块链不同的发展阶段的理由;再次,详细分析区块链3.0关键技术的研究现状,概述归纳它在物联网、医疗和农业等6大领域内的典型应用;最后,总结区块链3.0在发展过程中面临的关键性挑战和未来发展机遇。

    图表 | 参考文献 | 相关文章 | 多维度评价
    40. 结合遗传算法和滚动调度的多机器人任务分配算法
    邓辅秦, 黄焕钊, 谭朝恩, 付兰慧, 张建民, 林天麟
    《计算机应用》唯一官方网站    2023, 43 (12): 3833-3839.   DOI: 10.11772/j.issn.1001-9081.2022121916
    摘要526)   HTML12)    PDF (2617KB)(278)    收藏

    研究多机器人任务分配(MRTA)的目的是提高智能工厂中机器人完成任务的效率。针对现有算法在处理大规模、多约束的MRTA时存在不足的问题,提出一种结合遗传算法和滚动调度的MRTA算法(ACGARS)。首先,在遗传算法中采用基于有向无环图(DAG)的编码方式高效地处理任务之间的优先级约束;其次,在遗传算法的初始种群中加入先验知识以提高算法的搜索效率;最后,设计基于任务组的滚动调度策略用于减小求解问题的规模,从而实现对大规模问题的高效求解。在大规模问题实例上的实验结果表明,相较于构造性启发式算法(CHA)、最小化干扰算法(MIA)和基于惩罚策略的遗传算法(GAPS)生成的方案,当任务组数为20时,所提算法生成的方案的平均订单完成时间分别缩短了30.02%、16.86%和75.65%,验证了所提算法能有效地缩短订单的平均等待时间,提升多机器人任务分配效率。

    图表 | 参考文献 | 相关文章 | 多维度评价
2025年 45卷 6期
刊出日期: 2025-06-10
文章目录
过刊浏览
荣誉主编:张景中
主  编:徐宗本
副主编
:申恒涛 夏朝晖

国内邮发代号:62-110
国外发行代号:M4616
地址:四川成都双流区四川天府新区
   兴隆街道科智路1369号
   中科信息(科学城园区) B213
   (计算机应用编辑部)
电话:028-85224283-803
   028-85222239-803
网址:www.joca.cn
E-mail: bjb@joca.cn
期刊微信公众号
CCF扫码入会