[1] KARPOV A, MARKOV K, KIPYATKOVA I, et al. Large vocabulary Russian speech recognition using syntactico-statistical language modeling[J]. Speech Communication, 2014, 56(1):213-228. [2] KIPYATKOVA I, KARPOV A, VERKHODANOVA V, et al. Analysis of long-distance word dependencies and pronunciation variability at conversational Russian speech recognition[J]. Computer Science and Information Systems, 2012, 11(6):719-725. [3] JIAMPOJAMARN S, KONDRAK G, SHERIF T. Applying many-to-many alignments and hidden Markov models to letter-to-phoneme conversion[C]//Human Language Technologies:Proceedings of the North American Chapter of the Association of Computational Linguistics. New York:NAACM-HLT, 2007:372-379. [4] BISANI M, NEY H. Joint-sequence models for grapheme-to-phoneme conversion[J]. Speech Communication, 2008, 50(5):434-451. [5] NOVAK J R, MINEMATSU N, HIROSE K. WFST-based grapheme-to-phoneme conversion:open source tools for alignment, model-building and decoding[EB/OL].[2017-05-10]. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.361.9764. [6] GRAVES A. Generating sequences with recurrent neural networks[EB/OL].[2017-05-10]. https://arxiv.org/pdf/1308.0850.pdf. [7] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL].[2017-05-10]. https://arxiv.org/abs/1409.0473. [8] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//NIPS 2014:Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2014, 2:3104-3112. [9] YAO K, ZWEIG G. Sequence-to-sequence neural net models for grapheme-to-phoneme conversion[EB/OL].[2017-05-10]. https://arxiv.org/abs/1506.00196. [10] Wikipedia. IPA symbol for Russian pronunciations[EB/OL].[2017-10-17]. https://en.wikipedia.org/wiki/Help:IPA_for_Russian. [11] WELLS J C. SAMPA computer readable phonetic alphabet[C]//Handbook of Standards and Resources for Spoken Language Systems. Berlin:Walter de Gruyter, 1997. [12] OTANDER J. CMU sphinx[EB/OL].(2017-04-26)[2017-10-17]. https://cmusphinx.github.io/wiki/download/. [13] 信德麟,张会森,华劭.俄语语法[M].2版.北京:外语教学与研究出版社, 2009:1-92.(XIN D L, ZHANG H S, HUA S. Russian Grammar(Second Edition)[M]. Beijing:Foreign Language Teaching and Research Press, 2009:1-92.) [14] 喻俨,莫瑜.深度学习原理与TensorFlow实践[M].北京:电子工业出版社, 2017:128-139.(YU Y, MO Y. Deep Learning Principle and TensorFlow Practice[M]. Beijing:Publishing House of Electronics Industry, 2017:128-139.) [15] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [16] GIMPEL K, SMITH N A. Softmax-margin CRFs:training log-linear models with cost functions[C]//Human Language Technologies:Proceedings of the North American Chapter of the Association of Computational Linguistics. Los Angeles:DBLP, 2010:733-736. [17] CHO K, van MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL].[2017-05-10]. https://arxiv.org/abs/1406.1078. [18] KOEHN P. Pharaoh:a beam search decoder for phrase-based statistical machine translation models[C]//AMTA 2004:Proceedings of the 6th Conference of the Association for Machine Translation in the Americas. Berlin:Springer, 2004:115-124. [19] WILLIAMS R J, PENG J. An efficient gradient-based algorithm for on-line training of recurrent network trajectories[J]. Neural Computation, 1990, 2(4):490-501. [20] ABADI M, BARHAM P, CHEN J, et al. TensorFlow:a system for large-scale machine learning[C]//Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation. Savannah, GA:USENIX, 2016:265-283. [21] PETERS B, DEHDARI J, van GENABITH J. Massively multilingual neural grapheme-to-phoneme conversion[C]//Proceedings of the First Workshop on Building Linguistically Generalizable NLP Systems. Copenhagen:EMNLP, 2017:19-26. [22] 滕飞,郑超美,李文.基于长短期记忆多维主题情感倾向性分析模型[J].计算机应用, 2016, 36(8):2252-2256.(TENG F, ZHENG C M, LI W. Multidimensional topic model for oriented sentiment analysis based on long short-term memory[J]. Journal of Computer Applications, 2016, 36(8):2252-2256.) [23] HANNEMANN M, TRMAL J, ONDEL L, et al. Bayesian joint-sequence models for grapheme-to-phoneme conversion[EB/OL].[2017-05-10]. http://www.fit.vutbr.cz/research/groups/speech/publi/2017/hannemann_icassp2017_0002836.pdf. [24] TSVETKOV Y, SITARAM S, FARUQUI M, et al. Polyglot neural language models:a case study in cross-lingual phonetic representation learning[EB/OL].[2017-05-10]. https://arxiv.org/abs/1605.03832. [25] MILDE B, SCHMIDT C, KÖHLER J. Multitask sequence-to-sequence models for grapheme-to-phoneme conversion[EB/OL].[2017-05-10]. http://www.isca-speech.org/archive/Interspeech_2017/pdfs/1436.PDF. |