[1] BLAGUS R, LUSA L. SMOTE for high-dimensional class-imbalanced data[J]. Bmc Bioinformatics, 2013, 14(1):106. [2] ZIEBA M, TOMCZAK J M, GONCZAREK A. RBM-SMOTE:restricted Boltzmann machines for synthetic minority oversampling technique[M]//ACⅡDS 2015:Proceedings of the 7th Asian Conference on Intelligent Information and Database Systems. Berlin:Springer, 2015:377-386. [3] 张永, 李卓然, 刘小丹. 基于主动学习SMOTE的非均衡数据分类[J]. 计算机应用与软件, 2012, 29(3):91-93.(ZHANG Y, LI Z R, LIU X D. Active learning SMOTE based imbalanced data classification[J]. Computer Applications and Software, 2012, 29(3):91-93.) [4] 杨智明, 乔立岩, 彭喜元. 基于改进SMOTE的不平衡数据挖掘方法研究[J]. 电子学报, 2007, 35(增刊2):22-26.(YANG Z M, QIAO L Y, PENG X Y. Research on datamining method for imbalanced dataset based on i mproved SMOTE[J]. Acta Electronica Sinica, 2007, 35(S2):22-26.) [5] 曾志强, 吴群, 廖备水, 等. 一种基于核SMOTE的非平衡数据集分类方法[J]. 电子学报, 2009, 37(11):2489-2495.(ZENG Z Q, WU Q, LIAO B S, et al. A classfication method for imbalance data set based on kernel SMOTE[J]. Acta Electronica Sinica, 2009, 37(11):2489-2495.) [6] 大勇. 基于非平衡数据的适应性采样集成分类器的研究[D]. 长沙:中南大学, 2010:1-42.(DA Y. An adaptive sampling ensemble classifier for learning from imbalanced data sets[D]. Changsha:Central South University, 2010:1-42.) [7] 谷琼, 袁磊, 熊启军, 等. 基于非均衡数据集的代价敏感学习算法比较研究[J]. 微电子学与计算机, 2011, 28(8):146-149.(GU Q, YUAN L, XIONG Q J, et al. A comparative study of cost-sensitive learning algorithm based on imbalanced data sets[J]. Microelectronics and Computer, 2011, 28(8):146-149.) [8] ZHU J, ZOU H, ROSSET S, et al. Multi-class AdaBoost[J]. Statistics & its Interface, 2006, 2(3):349-360. [9] 李正欣, 赵林度. 基于SMOTEBoost的非均衡数据集SVM分类器[J]. 系统工程, 2008, 26(5):116-119.(LI Z X, ZHAO L D. A SVM classifier for imbalanced datasets based on SMOTEBoost[J]. Systems Engineering, 2008, 26(5):116-119.) [10] ZHANG J. AdaCost:misclassification cost-sensitive boosting[EB/OL].[2017-05-10]. https://pdfs.semanticscholar.org/9ddf/bc2cc5c1b13b80a1a487b9caa57e80edd863.pdf. [11] GEIBEL P, BREFELD U, WYSOTZKI F. Perceptron and SVM learning with generalized cost models[J]. Intelligent Data Analysis, 2004, 8(5):439-455. [12] DOMINGOS P. MetaCost:a general method for making classifiers cost-sensitive[C]//KDD 1999:Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 1999:155-164. [13] 王金婉. 面向在线不均衡数据分类的极限学习机算法研究[D]. 新乡:河南师范大学, 2016:13-25.(WANG J W. Research on extreme learning machine for online swquential imbalanced data classification[D]. Xinxiang:Henan Normal University, 2016:13-25.) [14] 毛文涛, 王金婉, 何玲, 等. 面向贯序不均衡数据的混合采样极限学习机[J]. 计算机应用, 2015, 35(8):2221-2226.(MAO W T, WANG J W, HE L, et al. Hybrid sampling extreme learning machine for sequential imbalanced data[J]. Journal of Computer Applications, 2015, 35(8):2221-2226.) [15] 毛文涛, 田杨阳, 王金婉, 等. 面向贯序不均衡分类的粒度极限学习机[J]. 控制与决策, 2016, 31(12):2147-2154.(MAO W T, TIAN Y Y, WANG J W, et al. Granular extreme learning machine for sequential imbalanced data[J]. Control and Decision, 2016, 31(12):2147-2154.) [16] ADANKON M M, CHERIET M. Support vector machine[J]. Computer Science, 2002, 1(4):1-28. [17] 谷琼, 袁磊, 宁彬, 等. 一种基于混合重取样策略的非均衡数据集分类算法[J]. 计算机工程与科学, 2012, 34(10):128-134.(GU Q, YUAN L, NING B, et al. A noval classification algorithm for imbalanced datasets based on hybrid resampling strategy[J]. Computer Engineering and Science, 2012, 34(10):128-134.) |