1 |
王全英,梁景宏,贾瑞霞,等. 2020—2050年中国阿尔茨海默病患病情况预测研究[J]. 阿尔茨海默病及相关病, 2019, 2(1):289-298.
|
|
WANG Q Y, LIANG J H, JIA R X, et al. Alzheimer disease in China (2015—2050) estimated using the 1% population sampling survey in 2015 [J]. Alzheimer’s Disease and Related Diseases, 2019, 2(1): 289-298.
|
2 |
WEINER M W, VEITCH D P, AISEN P S, et al. Recent publications from the Alzheimer’s disease neuroimaging initiative: reviewing progress toward improved AD clinical trials[J]. Alzheimer’s and Dementia, 2017, 13(4): e1-e85. 10.1016/j.jalz.2016.11.007
|
3 |
DeYOE E A, BANDETTINI P, NEITZ J, et al. Functional Magnetic Resonance Imaging (FMRI) of the human brain[J]. Journal of Neuroscience Methods, 1994, 54(2): 171-187. 10.1016/0165-0270(94)90191-0
|
4 |
LAUTERBUR P C. Image formation by induced local interactions: examples employing nuclear magnetic resonance[J]. Nature, 1973, 242(5394): 190-191. 10.1038/242190a0
|
5 |
GOLBABAEI S, VAHID A, HATAMI J, et al. Classification of Alzheimer’s disease and mild cognitive impairment: machine learning applied to rs-fMRI brain graphs[C]// Proceedings of the 23rd Iranian Conference on Biomedical Engineering and the 1st International Iranian Conference on Biomedical Engineering. Piscataway: IEEE, 2016: 35-40. 10.1109/icbme.2016.7890925
|
6 |
KHAZAEE A, EBRAHIMZADEH A, BABAJANI-FEREMI A. Identifying patients with Alzheimer’s disease using resting-state fMRI and graph theory[J]. Clinical Neurophysiology, 2015, 126(11): 2132-2141. 10.1016/j.clinph.2015.02.060
|
7 |
SHI Y H, ZENG W M, DENG J, et al. The identification of Alzheimer’s disease using functional connectivity between activity voxels in resting-state fMRI data[J]. IEEE Journal of Translational Engineering in Health and Medicine, 2020, 8: No.1400211. 10.1109/jtehm.2020.2985022
|
8 |
GUI R Z, CHEN T J, NIE H. Classification of task-state fMRI data based on circle-EMD and machine learning[J]. Computational Intelligence and Neuroscience, 2020, 2020: No.791294. 10.1155/2020/7691294
|
9 |
周文,王瑜,肖红兵,等. 基于KPCA算法的阿尔茨海默症辅助诊断[J]. 中国医学物理学杂志, 2018, 35(4):404-409. 10.3969/j.issn.1005-202X.2018.04.007
|
|
ZHOU Q, WANG Y, XIAO H B, et al. Assisted diagnosis of Alzheimer’s disease based on KPCA algorithm[J]. Chinese Journal of Medical Physics, 2018, 35(4): 404-409. 10.3969/j.issn.1005-202X.2018.04.007
|
10 |
李长胜,王瑜,肖洪兵,等. KPCA和Adaboost算法在阿尔茨海默症功能磁共振影像分类中的应用[J]. 中国医学物理学杂志, 2019, 36(7):784-788. 10.3969/j.issn.1005-202X.2019.07.008
|
|
LI C S, WANG Y, XIAO H B, et al. Application of KPCA and Adaboost algorithm in the classification of functional magnetic resonance images of Alzheimer’s disease[J]. Chinese Journal of Medical Physics, 2019, 36(7): 784-788. 10.3969/j.issn.1005-202X.2019.07.008
|
11 |
HOSSEINI-ASL E, KEYNTON R, El-BAZ A. Alzheimer’s disease diagnostics by adaptation of 3D convolutional network[C]// Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 126-130. 10.1109/icip.2016.7532332
|
12 |
LIAN C F, LIU M X, ZHANG J, et al. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(4): 880-893. 10.1109/tpami.2018.2889096
|
13 |
HOSSEINI ASL E, GHAZAL M, MAHMOUD A. Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional network[J]. Frontiers in Bioscience-Landmark, 2018, 23(3): 584-596.
|
14 |
LAO H, ZHANG X, TANG Y, et al. Alzheimer’s disease diagnosis based on the visual attention model and equal-distance ring shape context features[J]. IET Image Processing, 2021,15(4):1-12.
|
15 |
JAIN R, JAIN N, AGGARWAL A, et al. Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images[J]. Cognitive Systems Research, 2019, 57: 147-159. 10.1016/j.cogsys.2018.12.015
|
16 |
ZHANG F, LI Z Z, ZHANG B Y, et al. Multi-modal deep learning model for auxiliary diagnosis of Alzheimer’s disease[J]. Neurocomputing, 2019, 361: 185-195. 10.1016/j.neucom.2019.04.093
|
17 |
CHAN T H, JIA K, GAO S H, et al. PCANet: a simple deep learning baseline for image classification?[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5017-5032. 10.1109/tip.2015.2475625
|
18 |
李书通,肖斌,李伟生,等. 基于3D-PCANet的阿尔兹海默病辅助诊断[J]. 计算机科学, 2018, 45(6A): 140-142, 156. 10.11896/j.issn.1002-137X.2018.Z6.029
|
|
LI S T, XIAO B, LI W S, et al. Diagnosis of Alzheimer’s disease based on 3D-PCANet[J]. Computer Science, 2018, 45(6A): 140-142, 156. 10.11896/j.issn.1002-137X.2018.Z6.029
|
19 |
JU R H, HU C H, ZHOU P, et al. Early diagnosis of Alzheimer’s disease based on resting-state brain networks and deep learning[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(2): 244-257. 10.1109/tcbb.2017.2776910
|
20 |
PERAZA L R, COLLOBY S J, DEBOYS L, et al. Regional functional synchronizations in dementia with Lewy bodies and Alzheimer’s disease[J]. International Psychogeriatrics, 2016, 28(7): 1143-1151. 10.1017/s1041610216000429
|
21 |
JIANG L L, ZUO X N. Regional homogeneity: a multimodal, multiscale neuroimaging marker of the human connectome[J]. The Neuroscientist, 2016, 22(5): 486-505. 10.1177/1073858415595004
|
22 |
ZANG Y F, HE Y, ZHU C Z, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain and Development, 2007, 29(2): 83-91. 10.1016/j.braindev.2006.07.002
|
23 |
YAN C G, WANG X D, ZUO X N, et al. DPABI: data processing & analysis for (resting-state) brain imaging[J]. Neuroinformatics, 2016, 14(3): 339-351. 10.1007/s12021-016-9299-4
|
24 |
DAI Z J, YAN C G, WANG Z Q, et al. Discriminative analysis of early Alzheimer’s disease using Multi-modal imaging and Multi-level characterization with Multi-classifier (M3)[J]. NeuroImage, 2012, 59(3): 2187-2195. 10.1016/j.neuroimage.2011.10.003
|