《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (3): 683-687.DOI: 10.11772/j.issn.1001-9081.2021040760
• 2021年中国计算机学会人工智能会议(CCFAI 2021) • 上一篇
Yunzhi QIU, Tinghua WANG(), Xiaolu DAI
摘要:
针对当前基于特征加权的模糊支持向量机(FSVM)只考虑特征权重对隶属度函数的影响,而没有考虑在样本训练过程中将特征权重应用到核函数计算中的缺陷,提出了同时考虑特征加权对隶属度函数和核函数计算的影响的模糊支持向量机算法——双重特征加权模糊支持向量机(DFW-FSVM)。首先,利用信息增益(IG)计算出每个特征的权重;然后,在原始空间中基于特征权重计算出样本到类中心的加权欧氏距离,进而应用该加权欧氏距离构造隶属度函数,并在样本训练过程中将特征权重应用到核函数的计算中;最后,根据加权的隶属度函数和核函数构造出DFW-FSVM算法。该方法避免了在计算过程中被弱相关或不相关的特征所支配。在8个UCI数据集上进行对比实验,结果显示DFW-FSVM算法的准确率和F1值较5个对比算法(SVM、FSVM、特征加权SVM(FWSVM)、特征加权FSVM(FWFSVM)、基于中心核对齐的FSVM(CKA-FSVM))中的最好结果分别提升了2.33和5.07个百分点,具有较好的分类性能。
中图分类号: