1 |
YANG P, FREEMAN R A, LYNCH K M. Multi-agent coordination by decentralized estimation and control[J]. IEEE Transactions on Automatic Control, 2008, 53(11): 2480-2496. 10.1109/tac.2008.2006925
|
2 |
LIAN Z T, DESHMUKH A. Performance prediction of an unmanned airborne vehicle multi-agent system[J]. European Journal of Operational Research, 2006, 172(2): 680-695. 10.1016/j.ejor.2004.10.015
|
3 |
GEORGE J. Networked sensing and distributed Kalman-Bucy filtering based on dynamic average consensus[C]// Proceedings of the 2013 IEEE International Conference on Distributed Computing in Sensor Systems. Piscataway: IEEE, 2013: 175-182. 10.1109/dcoss.2013.11
|
4 |
XIE G M, WANG L. Consensus control for a class of networks of dynamic agents[J]. International Journal of Robust and Nonlinear Control, 2007, 17(10/11): 941-959. 10.1002/rnc.1144
|
5 |
黄红伟,黄天民,吴胜,等. 基于事件触发的二阶多智能体系统平均一致性[J]. 信息与控制, 2016, 45(6): 729-734, 758. 10.13976/j.cnki.xk.2016.0729
|
|
HUANG H W, HUANG T M, WU S, et al. Event-triggered average consensus of second-order multi-agent systems[J]. Information and Control, 2016, 45(6): 729-734, 758. 10.13976/j.cnki.xk.2016.0729
|
6 |
CHEN F, REN W. Distributed Average Tracking in Multi-Agent Systems[M]. Cham: Springer, 2020: 5-6. 10.1007/978-3-030-39536-0_10
|
7 |
LIU C L, SHAN L, CHEN Y Y, et al. Average consensus filter of first-order multi-agent systems with disturbances[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2018, 65(11): 1763-1767. 10.1109/tcsii.2017.2762723
|
8 |
郑敏,刘成林,刘飞. 具有定常输入的二阶多智能体系统的平均一致性滤波[J]. 智能系统学报, 2018, 13(3): 399-406. 10.11992/tis.201612022
|
|
ZHENG M, LIU C L, LIU F. Average-consensus filter of second-order multiagent systems with constant inputs[J]. CAAI Transactions on Intelligent Systems, 2018, 13(3): 399-406. 10.11992/tis.201612022
|
9 |
CHEN Y L, QI D L, ZHANG J L, et al. Study on distributed dynamic average consensus algorithm[C]// Proceedings of the 7th International Conference on Information, Communication and Networks. Piscataway: IEEE, 2019: 225-229. 10.1109/icicn.2019.8834978
|
10 |
KIA S S, CORTÉS J, MARTÍNEZ S. Dynamic average consensus under limited control authority and privacy requirements[J]. International Journal of Robust and Nonlinear Control, 2015, 25(13): 1941-1966. 10.1002/rnc.3178
|
11 |
CHEN F, CAO Y C, REN W. Distributed average tracking of multiple time-varying reference signals with bounded derivatives[J]. IEEE Transactions on Automatic Control, 2012, 57(12): 3169-3174. 10.1109/tac.2012.2199176
|
12 |
BAI H, FREEMAN R A, LYNCH K M. Robust dynamic average consensus of time-varying inputs[C]// Proceedings of the 49th IEEE Conference on Decision and Control. Piscataway: IEEE, 2010: 3104-3109. 10.1109/cdc.2010.5717485
|
13 |
MORADIAN H, KIA S S. On robustness analysis of a dynamic average consensus algorithm to communication delay[J]. IEEE Transactions on Control of Network Systems, 2019, 6(2): 633-641. 10.1109/tcns.2018.2863568
|
14 |
LIU H, CAO M, DE PERSIS C. Quantization effects on synchronized motion of teams of mobile agents with second-order dynamics[J]. Systems and Control Letters, 2012, 61(12): 1157-1167. 10.1016/j.sysconle.2012.08.011
|
15 |
ZHANG Y, LIU C L. Average-consensus tracking for first-order multi-agent systems with quantized data[C]// Proceedings of the 32nd Chinese Control and Decision Conference. Piscataway: IEEE, 2020: 850-855. 10.1109/ccdc49329.2020.9164508
|
16 |
CERAGIOLI F, DE PERSIS C, FRASCA P. Discontinuities and hysteresis in quantized average consensus[J]. Automatica, 2011, 47(9): 1916-1928. 10.1016/j.automatica.2011.06.020
|
17 |
YU S H, WANG Y L, JIN L N, et al. Asymptotic average consensus of continuous-time multi-agent systems with dynamically quantized communication[J]. IFAC Proceedings Volumes, 2014, 47(3): 1819-1824. 10.3182/20140824-6-za-1003.02238
|
18 |
FANG J, LI H B. Distributed consensus with quantized data via sequence averaging[J]. IEEE Transactions on Signal Processing, 2010, 58(2): 944-948. 10.1109/tsp.2009.2032951
|
19 |
WU Y J, WANG L. Average consensus of continuous-time multi-agent systems with quantized communication[J]. International Journal of Robust and Nonlinear Control, 2014, 24(18): 3345-3371. 10.1002/rnc.3060
|
20 |
LIU S, LI T, XIE L H, et al. Continuous-time and sampled-data-based average consensus with logarithmic quantizers[J]. Automatica, 2013, 49(11): 3329-3336. 10.1016/j.automatica.2013.07.016
|
21 |
BIAN T, WANG Y W. Average consensus of multi-agent systems under logarithm quantized communications[C]// Proceedings of the 12th International Conference on Control Automation Robotics and Vision. Piscataway: IEEE, 2012: 418-423. 10.1109/icarcv.2012.6485195
|
22 |
ZHANG Z Q, ZHANG L, HAO F, et al. Periodic event-triggered consensus with quantization[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2016, 63(4): 406-410. 10.1109/tcsii.2015.2505038
|
23 |
GODSIL C, ROYLE G. Algebraic Graph Theory, GTM 207[M]. New York: Springer, 2001: 279-284. 10.1007/978-1-4613-0163-9_13
|
24 |
FRANK E. On the zeros of polynomials with complex coefficients[J]. Bulletin of the American Mathematical Society, 1946, 52(2): 144-157. 10.1090/s0002-9904-1946-08526-2
|
25 |
KIA S S, SCOY B VAN, CORTÉS J, et al. Tutorial on dynamic average consensus: the problem, its applications, and the algorithms[J]. IEEE Control Systems Magazine, 2019, 39(3): 40-72. 10.1007/978-3-642-22164-4_7
|