| 1 | NGUYEN H, MACLAGAN S J, NGUYEN T D, et al. Animal recognition and identification with deep convolutional neural networks for automated wildlife monitoring[C]// Proceedings of the 2017 IEEE International Conference on Data Science and Advanced Analytics. Piscataway: IEEE, 2017:40-49.  10.1109/dsaa.2017.31 | 
																													
																						| 2 | CHEN G B, HAN T X, HE Z H, et al. Deep convolutional neural network based species recognition for wild animal monitoring[C]// Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway: IEEE, 2014:858-862.  10.1109/icip.2014.7025172 | 
																													
																						| 3 | GOMEZ VILLA A, SALAZAR A, VARGAS F. Towards automatic wild animal monitoring: identification of animal species in camera-trap images using very deep convolutional neural networks[J]. Ecological Informatics, 2017, 41:24-32.  10.1016/j.ecoinf.2017.07.004 | 
																													
																						| 4 | ZHU C B, LI T H, LI G. Towards automatic wild animal detection in low quality camera-trap images using two-channeled perceiving residual pyramid networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE, 2017:2860-2864.  10.1109/iccvw.2017.337 | 
																													
																						| 5 | OUYANG W L, WANG X G, ZHANG C, et al. Factors in finetuning deep model for object detection with long-tail distribution[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:864-873.  10.1109/cvpr.2016.100 | 
																													
																						| 6 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceeding of the 2014 European Conference on Computer Vision, LNCS 8693. Cham: Springer, 2014:740-755. | 
																													
																						| 7 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceeding of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255.  10.1109/cvpr.2009.5206848 | 
																													
																						| 8 | TORRALBA A, FERGUS R, FREEMAN W T. 80 million tiny images: a large data set for nonparametric object and scene recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(11):1958-1970.  10.1109/tpami.2008.128 | 
																													
																						| 9 | POUYANFAR S, TAO Y D, MOHAN A, et al. Dynamic sampling in convolutional neural networks for imbalanced data classification[C]// Proceeding of the 2018 IEEE Conference on Multimedia Information Processing and Retrieval. Piscataway: IEEE, 2018: 112-117.  10.1109/mipr.2018.00027 | 
																													
																						| 10 | HE H B, GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9):1263-1284.  10.1109/tkde.2008.239 | 
																													
																						| 11 | 王俊红,闫家荣. 基于欠采样和代价敏感的不平衡数据分类算法[J]. 计算机应用, 2021, 41(1):48-52. | 
																													
																						|  | WANG J H, YAN J R. Classification algorithm based on undersampling and cost-sensitiveness for unbalanced data[J]. Journal of Computer Applications, 2021, 41(1):48-52. | 
																													
																						| 12 | HUANG C, LI Y N, LOY C C, et al. Learning deep representation for imbalanced classification[C]// Proceeding of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:5375-5384.  10.1109/cvpr.2016.580 | 
																													
																						| 13 | CUI Y, JIA M L, LIN T Y, et al. Class-balanced loss based on effective number of samples[C]// Proceeding of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:9260-9269.  10.1109/cvpr.2019.00949 | 
																													
																						| 14 | CAO K D, WEI C, GAIDON A, et al. Learning imbalanced datasets with label-distribution-aware margin loss[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 1567-1578. | 
																													
																						| 15 | 姚佳奇,徐正国,燕继坤,等. WPLoss:面向类别不平衡数据的加权成对损失[J]. 计算机应用研究, 2021, 38(3):702-704, 709. | 
																													
																						|  | YAO J Q, XU Z G, YAN J K, et al. WPLoss: weighted pairwise loss for class-imbalanced datasets[J]. Application Research of Computers, 2021, 38(3):702-704, 709. | 
																													
																						| 16 | XIANG L Y, DING G G, HAN J G. Learning from multiple experts: self-paced knowledge distillation for long-tailed classification[C]// Proceeding of the 2020 European Conference on Computer Vision, LNCS 12350. Cham: Springer, 2020:247-263. | 
																													
																						| 17 | ZHANG S Y, CHEN C, HU X Y, et al. Balanced knowledge distillation for long-tailed learning[EB/OL]. (2021-04-21) [2021-05-13].. | 
																													
																						| 18 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:779-788.  10.1109/cvpr.2016.91 | 
																													
																						| 19 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:6517-6525.  10.1109/cvpr.2017.690 | 
																													
																						| 20 | REDMON R, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2021-05-13].. | 
																													
																						| 21 | JIANG Z C, ZHAO L Q, LI S Y, et al. Real-time object detection method based on improved YOLOv4-tiny[EB/OL]. (2020-12-02) [2021-05-13].. | 
																													
																						| 22 | WANG Y X, RAMANAN D, HEBERT M. Learning to model the tail[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 7032-7042.  10.1109/cvpr.2017.323 | 
																													
																						| 23 | CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16:321-357.  10.1613/jair.953 | 
																													
																						| 24 | HAN H, WANG W Y, MAO B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]// Proceedings of the 2005 International Conference on Intelligent Computing, LNCS 3644. Berlin: Springer, 2005:878-887. | 
																													
																						| 25 | BUNKHUMPORNPAT C, SINAPIROMSARAN K, LURSINSAP C. Safe-Level-SMOTE: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem[C]// Proceedings of the 2009 Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin: Springer, 2009: 475-482.  10.1007/978-3-642-01307-2_43 | 
																													
																						| 26 | LIU X Y, WU J X, ZHOU Z H. Exploratory undersampling for class-imbalance learning[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2009, 39(2):539-550.  10.1109/tsmcb.2008.2007853 | 
																													
																						| 27 | MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2013:3111-3119. | 
																													
																						| 28 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceeding of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:2999-3007.  10.1109/iccv.2017.324 | 
																													
																						| 29 | LIU Z W, MIAO Z Q, ZHAN X H, et al. Large-scale long-tailed recognition in an open world[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2532-2541.  10.1109/cvpr.2019.00264 | 
																													
																						| 30 | KANG B Y, XIE S N, ROHRBACH M, et al. Decoupling representation and classifier for long-tailed recognition[EB/OL]. (2020-02-19) [2021-05-13].. | 
																													
																						| 31 | ZHOU B Y, CUI Q, WEI X S, et al. BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition[C]// Proceeding of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020:9716-9725.  10.1109/cvpr42600.2020.00974 | 
																													
																						| 32 | ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]// Proceeding of the 34th AAAI Conference on Artificial intelligence. Palo Alto, CA: AAAI Press, 2020:12993-13000.  10.1609/aaai.v34i07.6999 | 
																													
																						| 33 | REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]// Proceeding of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:658-666.  10.1109/cvpr.2019.00075 |