《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (7): 2253-2261.DOI: 10.11772/j.issn.1001-9081.2024070956
收稿日期:
2024-07-09
修回日期:
2024-10-04
接受日期:
2024-10-09
发布日期:
2025-07-10
出版日期:
2025-07-10
通讯作者:
郭书君
作者简介:
郭书君(2000—),女,四川达州人,硕士研究生,CCF会员,主要研究方向:智能交通、交通状态识别与预测 sjguo@chd.edu.cn基金资助:
Shujun GUO(), Weijun REN, Qianqian CHEN, Guangfei YOU
Received:
2024-07-09
Revised:
2024-10-04
Accepted:
2024-10-09
Online:
2025-07-10
Published:
2025-07-10
Contact:
Shujun GUO
About author:
GUO Shujun, born in 2000, M. S. candidate. Her research interests include intelligent transportation, traffic status recognition and prediction.Supported by:
摘要:
针对现有的交通状态预测模型不能有效应对高速公路交通状态的模糊性以及模型训练后不能有效使用实时数据流的问题,提出基于聚类的多变量时间序列交通状态实时预测模型。首先,在分析交通流参数后,构建基于改进的模糊C均值(FCM)算法与熵权法的分类模型对交通状态进行模式定义并设定分类标准,并采用状态指数(SI)指标解决分类边界模糊问题;其次,在分类模型的基础上构建多变量时间序列预测模型,该模型结合卷积网络和注意力机制,能有效地捕捉时间序列数据的长短期依赖关系;然后,利用反向传播更新机制进行在线学习,从而实现预测过程的实时化;最后,将模型在加州交通管理中心性能监控系统(PeMS)数据集上进行测试,把数据集按时间顺序分为训练集、验证集和测试集,并模拟实时数据流进行在线学习和预测。实验结果表明,预测步长为6时,与经典的LightTS(Light Sampling-oriented MLP Structures)模型相比,所提模型的均方误差(MSE)和平均绝对误差(MAE)分别降低了22.81%和14.64%。可见,所提模型能够有效区分交通状态等级,并实现交通状态的实时预测。
中图分类号:
郭书君, 任卫军, 陈倩倩, 游广飞. 基于聚类多变量时间序列模型的交通状态实时预测[J]. 计算机应用, 2025, 45(7): 2253-2261.
Shujun GUO, Weijun REN, Qianqian CHEN, Guangfei YOU. Real-time prediction of traffic status based on clustering multivariate time series model[J]. Journal of Computer Applications, 2025, 45(7): 2253-2261.
聚类算法 | 轮廓系数 | Davies-Bouldin指数 | Calinski-Harabasz指数 | 目标函数 |
---|---|---|---|---|
FCM | 0.374 180 211 | 0.941 851 020 | 2 954.486 441 | 13.152 365 85 |
KMeans++-FCM | 0.376 032 070 | 1.042 522 776 | 2 214.476 676 | 17.014 337 58 |
PSO-FCM[ | 13.134 278 60 | |||
DE-FCM | 0.374 475 615 | 0.938 586 652 | 2 957.567 658 | 13.152 172 09 |
AC-FCM | 0.374 475 615 | 0.938 586 652 | 2 957.567 658 | 13.152 172 09 |
ABC-FCM | 0.408 400 850 | 0.919 409 954 | 3 044.087 693 | 13.124 493 50 |
SG-FCM | 0.413 689 585 | 0.895 056 244 | 3 075.347 074 |
表1 不同算法的聚类效果
Tab. 1 Clustering effects of different algorithms
聚类算法 | 轮廓系数 | Davies-Bouldin指数 | Calinski-Harabasz指数 | 目标函数 |
---|---|---|---|---|
FCM | 0.374 180 211 | 0.941 851 020 | 2 954.486 441 | 13.152 365 85 |
KMeans++-FCM | 0.376 032 070 | 1.042 522 776 | 2 214.476 676 | 17.014 337 58 |
PSO-FCM[ | 13.134 278 60 | |||
DE-FCM | 0.374 475 615 | 0.938 586 652 | 2 957.567 658 | 13.152 172 09 |
AC-FCM | 0.374 475 615 | 0.938 586 652 | 2 957.567 658 | 13.152 172 09 |
ABC-FCM | 0.408 400 850 | 0.919 409 954 | 3 044.087 693 | 13.124 493 50 |
SG-FCM | 0.413 689 585 | 0.895 056 244 | 3 075.347 074 |
类别颜色 | 状态信息 | 图中标注的聚类中心 | 样本数 | 样本比例/% | 聚类中心坐标 |
---|---|---|---|---|---|
橙色 | 严重拥堵(5) | Status 5 | 605 | 30.01 | (37.375 83, 448.692 11, 31.443 06) |
紫色 | 中度拥堵(4) | Status 4 | 561 | 27.83 | (56.719 58, 527.789 45, 25.505 64) |
绿色 | 轻度拥堵(3) | Status 3 | 435 | 21.58 | (60.642 46, 283.190 45, 23.226 44) |
蓝色 | 稳定流动(2) | Status 2 | 253 | 12.55 | (78.685 77, 286.191 50, 13.941 19) |
红色 | 自由流畅(1) | Status 1 | 162 | 8.04 | (83.211 55, 206.096 52, 9.553 94) |
表2 不同类别样本数量、比例以及聚类中心
Tab. 2 Number, proportion and clustering centers of different types of samples
类别颜色 | 状态信息 | 图中标注的聚类中心 | 样本数 | 样本比例/% | 聚类中心坐标 |
---|---|---|---|---|---|
橙色 | 严重拥堵(5) | Status 5 | 605 | 30.01 | (37.375 83, 448.692 11, 31.443 06) |
紫色 | 中度拥堵(4) | Status 4 | 561 | 27.83 | (56.719 58, 527.789 45, 25.505 64) |
绿色 | 轻度拥堵(3) | Status 3 | 435 | 21.58 | (60.642 46, 283.190 45, 23.226 44) |
蓝色 | 稳定流动(2) | Status 2 | 253 | 12.55 | (78.685 77, 286.191 50, 13.941 19) |
红色 | 自由流畅(1) | Status 1 | 162 | 8.04 | (83.211 55, 206.096 52, 9.553 94) |
时间 | 速度/(km·h-1) | 流量/(veh·5 min-1) | 占有率/% | 状态值 | SI值 |
---|---|---|---|---|---|
2023-12-08T00:00 | 78.85 | 232 | 12.99 | 2 | 1.90 |
2023-12-08T03:05 | 82.97 | 169 | 7.77 | 1 | 1.19 |
2023-12-08T06:25 | 83.75 | 291 | 10.74 | 2 | 1.84 |
2023-12-08T08:35 | 39.28 | 549 | 34.89 | 5 | 5.39 |
2023-12-08T12:35 | 52.48 | 459 | 28.99 | 4 | 4.82 |
2023-12-08T17:40 | 55.51 | 439 | 22.47 | 4 | 4.22 |
2023-12-08T23:15 | 72.72 | 335 | 17.99 | 2 | 2.64 |
表3 实时交通状态数据分类
Tab. 3 Real-time traffic status data classification
时间 | 速度/(km·h-1) | 流量/(veh·5 min-1) | 占有率/% | 状态值 | SI值 |
---|---|---|---|---|---|
2023-12-08T00:00 | 78.85 | 232 | 12.99 | 2 | 1.90 |
2023-12-08T03:05 | 82.97 | 169 | 7.77 | 1 | 1.19 |
2023-12-08T06:25 | 83.75 | 291 | 10.74 | 2 | 1.84 |
2023-12-08T08:35 | 39.28 | 549 | 34.89 | 5 | 5.39 |
2023-12-08T12:35 | 52.48 | 459 | 28.99 | 4 | 4.82 |
2023-12-08T17:40 | 55.51 | 439 | 22.47 | 4 | 4.22 |
2023-12-08T23:15 | 72.72 | 335 | 17.99 | 2 | 2.64 |
预测步长 | FSNet[ | LightTS[ | Informer[ | StemGNN[ | SCINet[ | MTS-EnhanceNet | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
6 | 0.826 8 | 0.752 8 | 0.496 9 | 0.479 9 | 0.432 1 | 0.451 8 | 0.487 9 | 0.510 6 | 0.305 3 | 0.382 6 | ||
12 | 1.111 2 | 0.909 7 | 0.439 9 | 0.446 9 | 0.446 6 | 0.454 9 | 0.545 5 | 0.536 5 | 0.270 2 | 0.388 9 |
表4 不同模型的均方误差(MSE)与平均绝对误差(MAE)对比分析
Tab. 4 Comparative analysis of Mean Squared Error (MSE) and Mean Absolute Error (MAE) of different models
预测步长 | FSNet[ | LightTS[ | Informer[ | StemGNN[ | SCINet[ | MTS-EnhanceNet | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
6 | 0.826 8 | 0.752 8 | 0.496 9 | 0.479 9 | 0.432 1 | 0.451 8 | 0.487 9 | 0.510 6 | 0.305 3 | 0.382 6 | ||
12 | 1.111 2 | 0.909 7 | 0.439 9 | 0.446 9 | 0.446 6 | 0.454 9 | 0.545 5 | 0.536 5 | 0.270 2 | 0.388 9 |
数据类型 | 时间 | 速度/(km·h-1) | 流量/(veh·5 min-1) | 占有率/% | SI值 |
---|---|---|---|---|---|
回溯窗口 (window=288) | 2023-12-05T14:55 | 51.42 | 565 | 30.53 | 4.69 |
2023-12-05T15:00 | 61.13 | 368 | 24.13 | 3.84 | |
2023-12-05T15:05 | 55.86 | 479 | 31.00 | 3.96 | |
| |||||
2023-12-06T14:50 | 67.69 | 315 | 23.07 | 3.29 | |
预测窗口 (H=12) | 2023-12-06T14:55 | 61.35 | 352 | 22.50 | 3.82 |
2023-12-06T15:00 | 55.62 | 388 | 19.82 | 3.10 | |
| |||||
2023-12-06T15:50:00 | 31.83 | 481 | 38.04 | 5.61 |
表5 交通流参数的实时预测结果
Tab. 5 Real-time prediction results of traffic flow parameters
数据类型 | 时间 | 速度/(km·h-1) | 流量/(veh·5 min-1) | 占有率/% | SI值 |
---|---|---|---|---|---|
回溯窗口 (window=288) | 2023-12-05T14:55 | 51.42 | 565 | 30.53 | 4.69 |
2023-12-05T15:00 | 61.13 | 368 | 24.13 | 3.84 | |
2023-12-05T15:05 | 55.86 | 479 | 31.00 | 3.96 | |
| |||||
2023-12-06T14:50 | 67.69 | 315 | 23.07 | 3.29 | |
预测窗口 (H=12) | 2023-12-06T14:55 | 61.35 | 352 | 22.50 | 3.82 |
2023-12-06T15:00 | 55.62 | 388 | 19.82 | 3.10 | |
| |||||
2023-12-06T15:50:00 | 31.83 | 481 | 38.04 | 5.61 |
时间 | 速度/(km·h-1) | 流量/(veh·5 min-1) | 占有率/% | SI值 | 状态信息 |
---|---|---|---|---|---|
2023-12-06T14:55 | 61.35 | 352 | 22.50 | 3.82 | 轻度拥堵(3) |
2023-12-06T15:00 | 55.62 | 388 | 19.82 | 3.10 | 轻度拥堵(3) |
| |||||
2023-12-06T15:50 | 31.83 | 481 | 38.04 | 5.61 | 严重拥堵(5) |
表6 预测值的结果分析
Tab. 6 Result analysis of prediction values
时间 | 速度/(km·h-1) | 流量/(veh·5 min-1) | 占有率/% | SI值 | 状态信息 |
---|---|---|---|---|---|
2023-12-06T14:55 | 61.35 | 352 | 22.50 | 3.82 | 轻度拥堵(3) |
2023-12-06T15:00 | 55.62 | 388 | 19.82 | 3.10 | 轻度拥堵(3) |
| |||||
2023-12-06T15:50 | 31.83 | 481 | 38.04 | 5.61 | 严重拥堵(5) |
时间 | 数据类型 | 速度/(km·h-1) | 流量/(veh·5 min-1) | 占有率/% | SI值 |
---|---|---|---|---|---|
2023-12-06T15:00:00 | 真实数据 | 48.41 | 338 | 25.28 | 3.82 |
在线学习前 | 55.62 | 388 | 19.82 | 3.10 | |
在线学习后 | 54.48 | 331 | 21.26 | 3.31 | |
2023-12-06T15:05:00 | 真实数据 | 53.43 | 462 | 24.46 | 4.89 |
在线学习前 | 43.46 | 587 | 29.05 | 5.51 | |
在线学习后 | 49.39 | 501 | 26.40 | 5.18 | |
2023-12-06T15:10:00 | 真实数据 | 57.64 | 479 | 29.01 | 4.63 |
在线学习前 | 65.75 | 465 | 30.53 | 4.45 | |
在线学习后 | 62.07 | 467 | 30.03 | 4.52 | |
| |||||
2023-12-06T15:50:00 | 真实数据 | 35.17 | 477 | 32.22 | 5.49 |
在线学习前 | 31.83 | 481 | 38.04 | 5.61 | |
在线学习后 | 41.07 | 471 | 33.62 | 5.19 |
表7 真实值与在线学习前后的预测值的对比分析
Tab. 7 Comparative analysis of true value and prediction values before and after online learning
时间 | 数据类型 | 速度/(km·h-1) | 流量/(veh·5 min-1) | 占有率/% | SI值 |
---|---|---|---|---|---|
2023-12-06T15:00:00 | 真实数据 | 48.41 | 338 | 25.28 | 3.82 |
在线学习前 | 55.62 | 388 | 19.82 | 3.10 | |
在线学习后 | 54.48 | 331 | 21.26 | 3.31 | |
2023-12-06T15:05:00 | 真实数据 | 53.43 | 462 | 24.46 | 4.89 |
在线学习前 | 43.46 | 587 | 29.05 | 5.51 | |
在线学习后 | 49.39 | 501 | 26.40 | 5.18 | |
2023-12-06T15:10:00 | 真实数据 | 57.64 | 479 | 29.01 | 4.63 |
在线学习前 | 65.75 | 465 | 30.53 | 4.45 | |
在线学习后 | 62.07 | 467 | 30.03 | 4.52 | |
| |||||
2023-12-06T15:50:00 | 真实数据 | 35.17 | 477 | 32.22 | 5.49 |
在线学习前 | 31.83 | 481 | 38.04 | 5.61 | |
在线学习后 | 41.07 | 471 | 33.62 | 5.19 |
[1] | 陈钊正,吴聪.多变量聚类分析的高速公路交通流状态实时评估[J].交通运输系统工程与信息,2018, 18(3): 225-233. |
CHEN Z Z, WU C. A method of traffic state estimation for expressway based on multivariate clustering analysis [J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3): 225-233. | |
[2] | YUAN Y, ZHANG W, YANG X, et al. Traffic state classification and prediction based on trajectory data [J]. Journal of Intelligent Transportation Systems, 2021(Latest Articles): 1-15. |
[3] | ZHANG L, JIA Y, SUN D, et al. A fuzzy weighted c-means classification method for traffic flow state division [J]. Modern Physics Letters B, 2021, 35(20): No.2150341. |
[4] | TIŠLJARIĆ L, RIBIĆ F, MAJSTOROVIĆ Ž, et al. Speed transition matrix feature extraction for traffic state estimation using machine learning algorithms [M]// PETROVIĆ M, NOVAČKO L, BOŽIĆ D, et al. The science and development of transport — ZIRP 2021. Cham: Springer, 2022: 61-74. |
[5] | REZA S, FERREIRA M C, MACHADO J J M, et al. Traffic state prediction using one-dimensional convolution neural networks and long short-term memory [J]. Applied Sciences, 2022, 12(10): No.5149. |
[6] | KHAJEH HOSSEINI M, TALEBPOUR A. Probabilistic traffic state prediction based on vehicle trajectory data [J]. Data Science for Transportation, 2023, 5: No.22. |
[7] | USAMA M, MA R, HART J, et al. Physics-Informed Neural Networks (PINNs)-based traffic state estimation: an application to traffic network [J]. Algorithms, 2022, 15(12): No.447. |
[8] | GUPTA A, MAURYA M K, GOYAL N, et al. ISTGCN: integrated spatio-temporal modeling for traffic prediction using traffic graph convolution network [J]. Applied Intelligence, 2023, 53(23): 29153-29168. |
[9] | 陈德望.基于模糊聚类的快速路交通流状况分类[J].交通运输系统工程与信息,2005, 5(1): 62-67. |
CHEN D W. Classification of traffic flow situation of urban freeways based on fuzzy clustering [J]. Journal of Transportation Systems Engineering and Information Technology, 2005, 5(1): 62-67. | |
[10] | REILLY W. Highway capacity manual 2000 [J]. TR News, 1997, 193: 22-23. |
[11] | 李相勇,蒋葛夫.城市道路服务水平的模糊综合评判[J].交通运输系统工程与信息,2002, 2(3): 48-50. |
LI X Y, JIANG G F. Fuzzy comprehensive assessment of service level for urban roads [J]. Journal of Transportation Systems Engineering and Information Technology, 2002, 2(3): 48-50. | |
[12] | MAITRA B, SIKDAR P K, DHINGRA S L. Modeling congestion on urban roads and assessing level of service [J]. Journal of Transportation Engineering, 1999, 125(6): 508-514. |
[13] | National Academies of Sciences, Engineering, and Medicine. Highway capacity manual: a guide for multimodal mobility analysis [M]. 7th ed. Washington: National Academies Press, 2022. |
[14] | BAEK J. Highway regional classification method based on traffic flow characteristics for highway safety assessment [J]. Sensors, 2022, 22(1): No.86. |
[15] | 周涛,陆惠玲.数据挖掘中聚类算法研究进展[J].计算机工程与应用,2012, 48(12): 100-111. |
ZHOU T, LU H L. Clustering algorithm research advances on data mining [J]. Computer Engineering and Applications, 2012, 48(12): 100-111. | |
[16] | KRASNOV D, DAVIS D, MALOTT K, et al. Fuzzy c-means clustering: a review of applications in breast cancer detection [J]. Entropy, 2023, 25(7): No.1021. |
[17] | DING W, CHANG S, BAO S, et al. Accurate RSS-based localization using an opposition-based learning simulated annealing algorithm [EB/OL]. [2024-05-19]. . |
[18] | ALAM T, QAMAR S, DIXIT A, et al. Genetic algorithm: reviews, implementations, and applications [EB/OL]. [2024-05-22]. . |
[19] | WU J, TSANG E C C. A new three-way multi-attribute decision making based on regret theory and TOPSIS model [C]// Proceedings of the 2022 International Conference on Wavelet Analysis and Pattern Recognition. Piscataway: IEEE, 2022: 66-71. |
[20] | 杜崇.高速公路实时交通状态判别方法研究[D].北京:北京交通大学,2017. |
DU C. Research on real-time highway traffic states identification [D]. Beijing: Beijing Jiaotong University, 2017. | |
[21] | 周如心.高速公路交通流状态辨识与拥堵预测方法研究[D].南京:南京理工大学,2021. |
ZHOU R X. Research on the method of highway traffic flow identification and congestion forecast [D]. Nanjing: Nanjing University of Science and Technology, 2021. | |
[22] | YANG Z, HAO L, LIU Y, et al. Identification of expressway traffic states based on the enhanced FCM algorithm [C]// Proceedings of the 2022 International Conference on 3D Imaging Technology — 3D Imaging — Multidimensional Signal Processing and Deep Learning: Images, Augmented Reality and Information Technologies, Volume 1, SIST 349. Singapore: Springer, 2023: 167-179. |
[23] | BHAGAT-CONWAY M W, ZHANG S. Rush hour-and-a-half: traffic is spreading out post-lockdown [J]. PLoS ONE, 2023, 18(9): No.e0290534. |
[24] | KÁROLY A I, FULLÉR R, GALAMBOS P. Unsupervised clustering for deep learning: a tutorial survey [J]. Acta Polytechnica Hungarica, 2018, 15(8): 29-53. |
[25] | ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient transformer for long sequence time-series forecasting [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 11106-11115. |
[26] | BELLO I, ZOPH B, LE Q, et al. Attention augmented convolutional networks [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3285-3294. |
[27] | CHEE K J, RAMLI D A. Electrocardiogram biometrics using Transformer’s self-attention mechanism for sequence pair feature extractor and flexible enrollment scope identification [J]. Sensors, 2022, 22(9): No.3446. |
[28] | OH B D, KIM Y S. Lightweight text classifier using sinusoidal positional encoding [C]// Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2020: 63-69. |
[29] | HAZAN E. Introduction to online convex optimization [J]. Foundations and Trends in Optimization, 2016, 2(3/4): 157-325. |
[30] | KUMAR A, SHEN R, BUBECK S, et al. How to fine-tune vision models with SGD [EB/OL]. [2024-05-28]. . |
[31] | RUDER S. An overview of gradient descent optimization algorithms[EB/OL].[2024-05-30].. |
[32] | HU J, YIN H, WEI G, et al. An improved FCM clustering algorithm with adaptive weights based on PSO-TVAC algorithm [J]. Applied Intelligence, 2022, 52(8): 9521-9536. |
[33] | BEZDEK J C. Pattern recognition with fuzzy objective function algorithms, AAPR [M]. New York: Springer, 1981. |
[34] | PHAM Q, LIU C, SAHOO D, et al. Learning fast and slow for online time series forecasting [EB/OL]. [2024-06-10]. . |
[35] | ZHANG T, ZHANG Y, CAO W, al e t. Less is more: fast multivariate time series forecasting with light sampling-oriented MLP structures [EB/OL]. [2024-06-13]. . |
[36] | CAO D, WANG Y, DUAN J, et al. Spectral temporal graph neural network for multivariate time-series forecasting [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 17766-17778. |
[37] | LIU M, ZENG A, CHEN M, et al. SCINet: time series modeling and forecasting with sample convolution and interaction [C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 5816-5828. |
[1] | 徐章杰, 陈艳平, 扈应, 黄瑞章, 秦永彬. 联合边界生成的多目标学习的嵌套命名实体识别[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2229-2236. |
[2] | 陈丹阳, 张长伦. 多尺度去相关的图卷积网络模型[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2180-2187. |
[3] | 张悦岚, 苏静, 赵航宇, 杨白利. 基于知识感知与交互的多视图蒸馏推荐算法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2211-2220. |
[4] | 张英俊, 闫薇薇, 谢斌红, 张睿, 陆望东. 梯度区分与特征范数驱动的开放世界目标检测[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2203-2210. |
[5] | 齐巧玲, 王啸啸, 张茜茜, 汪鹏, 董永峰. 基于元学习的标签噪声自适应学习算法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2113-2122. |
[6] | 王慧斌, 胡展傲, 胡节, 徐袁伟, 文博. 基于分段注意力机制的时间序列预测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2262-2268. |
[7] | 陶永鹏, 柏诗淇, 周正文. 基于卷积和Transformer神经网络架构搜索的脑胶质瘤多组织分割网络[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2378-2386. |
[8] | 梁辰, 王奕森, 魏强, 杜江. 基于Tsransformer-GCN的源代码漏洞检测方法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2296-2303. |
[9] | 张子墨, 赵雪专. 多尺度稀疏图引导的视觉图神经网络[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2188-2194. |
[10] | 向尔康, 黄荣, 董爱华. 开放生成与特征优化的开集识别方法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2195-2202. |
[11] | 吴宗航, 张东, 李冠宇. 基于联合自监督学习的多模态融合推荐算法[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1858-1868. |
[12] | 花天辰, 马晓宁, 智慧. 基于浅层人工神经网络的可移植执行恶意软件静态检测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1911-1921. |
[13] | 姜超英, 李倩, 刘宁, 刘磊, 崔立真. 基于图对比学习的再入院预测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1784-1792. |
[14] | 陈路, 王怀瑶, 刘京阳, 闫涛, 陈斌. 融合空间-傅里叶域信息的机器人低光环境抓取检测[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1686-1693. |
[15] | 王丹, 张文豪, 彭丽娟. 基于深度学习的智能反射面辅助通信系统信道估计[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1613-1618. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||