《计算机应用》唯一官方网站

• •    下一篇

基于自适应特征提取和特征融合的点云滤波

李维刚1,王栋2,王永强1,李金灵1   

  1. 1. 武汉科技大学
    2. 武汉科技大学信息与工程学院
  • 收稿日期:2024-11-14 修回日期:2025-03-03 接受日期:2025-03-04 发布日期:2025-03-21 出版日期:2025-03-21
  • 通讯作者: 王栋
  • 基金资助:
    湖北省科技人才服务企业项目

Point cloud filtering based on adaptive feature extraction and feature fusion

  • Received:2024-11-14 Revised:2025-03-03 Accepted:2025-03-04 Online:2025-03-21 Published:2025-03-21
  • Supported by:
    Hubei Provincial Science and Technology Talent Service Enterprise Project

摘要: 针对现有滤波方法在处理具有高复杂度几何结构的点云模型中存在特征模糊现象,导致最终滤波效果较差的问题,本文提出了一种基于自适应特征提取和特征融合理论的点云特征正则化融合网络(PFRNet)。首先,通过自适应空间特征提取器学习到不同邻域之间的特征信息,从而捕获不同维度的局部邻域特征;然后,通过局部特征正则化融合从点云的局部信息中引入全局双线性响应,并对其进行正则化融合,削弱点云的共性特征,增强尖锐特征。最后,通过自相关注意力解码器在解码过程中增强不同邻域之间的联系,提升模型的全局感知能力,能够更好地提取局部几何特征。实验结果表明,PFRNet与Pointfilter相比,在倒角距离(CD)和均方误差(MSE)上有7.45%、4.99%的减小。可视化结果显示,本文方法相较于其他方法能够生成更接近真实的点云模型。

关键词: 点云滤波, 局部特征, 动态图边卷积, 特征融合, 注意力机制

Abstract: In order to solve the problem that the existing filtering methods have feature ambiguity in dealing with point cloud models with high complexity geometric structure, which leads to poor filtering effect, this paper proposes a point cloud feature regularization fusion network (PFRNet) based on adaptive feature extraction and feature fusion theory. Firstly, the feature information between different neighborhoods was learned by the adaptive spatial feature extractor, so as to capture the local neighborhood features of different dimensions. Then, the global bilinear response is introduced from the local information of the point cloud through the local feature regularization fusion, and it is regularized and fused to weaken the common features of the point cloud and enhance the sharp features. Finally, the correlation attention decoder is used to enhance the connection between different neighborhoods in the decoding process, improve the global perception ability of the model, and better extract local geometric features. Experimental results show that compared with Pointfilter, PFRNet has 7.45% and 4.99% reduction in Chamfering Distance (CD) and Mean Square Error (MSE). The visualization results show that the proposed method can generate a point cloud model closer to the real one than other methods.

Key words: point cloud filtering, local feature, dynamic graph edge convolution, feature fusion, attention mechanism

中图分类号: