| [1] |
王新宇,王宏生. 基于深度学习的文本匹配技术的研究综述[J]. 信息与电脑, 2020, 32(15): 73-74.
|
|
WANG X Y, WANG H S. Research summary of text matching techniques based on deep learning[J]. China Computer & Communication, 2020, 32(15): 73-74.
|
| [2] |
BAU D, ZHU J Y, STROBELT H, et al. Understanding the role of individual units in a deep neural network[J]. Proceedings of the National Academy of Sciences, 2020, 117(48): 30071-30078.
|
| [3] |
FINN C, ABBEEL P, LENVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1126-1135.
|
| [4] |
GHAROUN H, MOMENIFAR F, CHEN F, et al. Meta-learning approaches for few-shot learning: a survey of recent advances[J]. ACM Computing Surveys, 2024, 56(12): No.294.
|
| [5] |
SHU J, XIE Q, YI L, et al. Meta-weight-net: learning an explicit mapping for sample weighting[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 1919-1930.
|
| [6] |
RIYANTO S, SITANGGANG I S, DJATNA T, et al. Comparative analysis using various performance metrics in imbalanced data for multi-class text classification[J]. International Journal of Advanced Computer Science and Applications, 2023, 14(6): 1082-1090.
|
| [7] |
KARIMI D, DOU H, WARFIELD S K, et al. Deep learning with noisy labels: exploring techniques and remedies in medical image analysis[J]. Medical Image Analysis, 2020, 65: No.101759.
|
| [8] |
WANG J X. Meta-learning in natural and artificial intelligence[J]. Current Opinion in Behavioral Sciences, 2021, 38: 90-95.
|
| [9] |
TAUD H, MAS J F. MultiLayer Perceptron (MLP)[M]// CAMACHO OLMEDO M, PAEGELOW M, MAS J F, et al Geomatic approaches for modeling land change scenarios. Cham: Springer, 2018: 451-455.
|
| [10] |
程宁,戴远泉. 基于核协方差矩阵的无监督数据聚类[J]. 计算机应用与软件, 2023, 40(5): 288-296.
|
|
CHENG N, DAI Y Q. Unsupervised data clustering based on kernel covariance matrix[J]. Computer Applications and Software, 2023, 40(5): 288-296.
|
| [11] |
XIAO T, XIA T, YANG Y, et al. Learning from massive noisy labeled data for image classification[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 2691-2699.
|
| [12] |
LIU X, CHEN Q, DENG C, et al. LCQMC: a large-scale Chinese question matching corpus[C]// Proceedings of the 27th International Conference on Computational Linguistics. Stroudsburg: ACL, 2018: 1952-1962.
|
| [13] |
CHEN J, CHEN Q, LU X, et al. The BQ corpus: a large-scale domain-specific Chinese corpus for sentence semantic equivalence identification[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 4946-4951.
|
| [14] |
FAN Y, XIA Y, WU L, et al. Learning to reweight with deep interactions[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 7385-7393.
|
| [15] |
SHAHRAKI A, ABBASI M, HAUGEN Ø. Boosting algorithms for network intrusion detection: a comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost[J]. Engineering Applications of Artificial Intelligence, 2020, 94: No.103770.
|
| [16] |
黄月平,李小锋,齐乃新,等. 基于难例挖掘和自适应时间正则化的视觉目标跟踪算法[J]. 机器人, 2021, 43(3): 350-363.
|
|
HUANG Y P, LI X F, QI N X, et al. Visual object tracking algorithm based on hard negative mining and adaptive temporal regularization[J]. Robot, 2021, 43(3): 350-363.
|
| [17] |
QIAN X, GAO S, DENG W, et al. Improving oriented object detection by scene classification and task-aligned focal loss[J]. Mathematics, 2024, 12(9): No.1343.
|
| [18] |
OBIEDAT Q M, SCHWARTZ J K, MENDONCA R, et al. Studying the educational effect of a self-paced learning protocol for evaluating community environment accessibility: a preliminary analysis[J]. American Journal of Occupational Therapy, 2022, 76(S1): No.7610500021p1.
|
| [19] |
GE Z, WU Z, ZHANG X, et al. An extrapolated proximal iteratively reweighted method for nonconvex composite optimization problems[J]. Journal of Global Optimization, 2023, 86(4): 821-844.
|
| [20] |
REN M, ZENG W, YANG B, et al. Learning to reweight examples for robust deep learning[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 4334-4343.
|
| [21] |
ZHANG Z, PFISTER T. Learning fast sample re-weighting without reward data[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 705-714.
|
| [22] |
HE Y, FENG X, CHENG C, et al. MetaBalance: improving multi-task recommendations via adapting gradient magnitudes of auxiliary tasks[C]// Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2205-2215.
|
| [23] |
王佳琦,袁野,朱永同,等. 基于自适应重加权和正则化的集成元学习算法[J]. 计算机应用研究, 2024, 41(6): 1749-1755.
|
|
WANG J Q, YUAN Y, ZHU Y T, et al. Ensemble meta net based on adaptive reweight and regularization[J]. Application Research of Computers, 2024, 41(6): 1749-1755.
|
| [24] |
LI S, GONG K, LIU C H, et al. MetaSAug: meta semantic augmentation for long-tailed visual recognition[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 5208-5217.
|
| [25] |
余晨. 基于对数先验的协方差矩阵的参数估计[J]. 理论数学, 2024, 14(5): 479-488.
|
|
YU C. Parameter estimation of covariance matrix based on logarithmic prior[J]. Theoretical Mathematics, 2024, 14(5): 479-488.
|
| [26] |
王兴趣,贾世会,迟晓妮. 广义加权鲁棒主成分分析(GWRPCA) 的模型与算法[J]. 系统科学与数学, 2021, 41(12): 3363-3373.
|
|
WANG X Q, JIA S H, CHI X N. The model and algorithm of Generalized Weighted Robust Principal Component Analysis (GWRPCA)[J]. Journal of Systems Science and Mathematical Sciences, 2021, 41(12): 3363-3373.
|
| [27] |
CHEN Y, SHEN X, HU S X, et al. Boosting co-teaching with compression regularization for label noise[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2682-2686.
|
| [28] |
KOONCE B. ResNet 50[M]// Convolutional neural networks with swift for TensorFlow: image recognition and dataset categorization. Berkeley: Apress, 2021: 63-72.
|
| [29] |
MAO A, MOHRI M, ZHONG Y. Cross-entropy loss functions: theoretical analysis and applications[C]// Proceedings of the 2023 International Conference on Machine Learning. New York: JMLR.org, 2023: 23803-23828.
|
| [30] |
ZELIKMAN E, WU Y, MU J, et al. STaR: bootstrapping reasoning with reasoning[C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 15476-15488.
|
| [31] |
BRENIG J, TIMOFTE R. A study of forward-forward algorithm for self-supervised learning [EB/OL]. [2025-01-30]. .
|
| [32] |
LIU J, LI H B, HIMED B. Joint optimization of transmit and receive beamforming in active arrays[J]. IEEE Signal Processing Letters, 2014, 21(1): 39-42.
|
| [33] |
LI J N. Learning to learn from noisy labeled data[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5051-5059.
|
| [34] |
SUN Y, WANG S, FENG S, et al. ERNIE 3.0: large-scale knowledge enhanced pre-training for language understanding and generation[EB/OL]. [2024-11-21]..
|
| [35] |
车林威. 基于预训练模型的问题匹配任务鲁棒性研究[D]. 武汉:中南民族大学, 2024: 27-40.
|
|
CHE L W. Research on the robustness of question matching tasks based on pre-trained models[D]. Wuhan: South-Central Minzu University, 2024: 27-40.
|
| [36] |
宋中山,周珊,艾勇,等. 基于GhostNet的改进模型轻量化方法[J]. 中南民族大学学报(自然科学版), 2024, 43(5): 629-636.
|
|
SONG Z S, ZHOU S, AI Y, et al. Improved model lightweighting method based on GhostNet[J]. Journal of South-central Minzu University (Natural Science Edition), 2024, 43(5): 629-636.
|