《计算机应用》唯一官方网站

• •    下一篇

大语言模型驱动的语义量化网约车时空需求预测方法

张悦1,郭羽含2   

  1. 1. 辽宁工程技术大学
    2. 浙江科技学院
  • 收稿日期:2025-08-04 修回日期:2025-10-15 发布日期:2025-11-05 出版日期:2025-11-05
  • 通讯作者: 张悦

Ride-hailing spatiotemporal demand prediction method via large language model-driven semantic quantification

  • Received:2025-08-04 Revised:2025-10-15 Online:2025-11-05 Published:2025-11-05
  • Contact: Yue ZHANG

摘要: 网约车需求预测的预测精度直接影响城市运力资源配置效率与交通运行效能。现有预测方法在应对非常规交通事件时,因缺乏对时间序列多模态模式的全局捕获能力及异常流量的精细化建模机制,预测精度显著下降。针对该问题,提出基于Llama3模型领域适配微调与事件信息语义融合的数据增强方法,构建包含事件重要系数和拥堵影响系数等多维特征的量化表征体系,实现非结构化事件描述到结构化数值特征的转换。融合Informer编码器的长时序全局建模能力与双向门控循环单元(GRU)的局部序列动态捕捉优势,设计InformerGRU(Informer with Gated Recurrent Unit)双路径协同架构,通过自适应特征融合层实现多尺度特征智能聚合。基于真实数据的实验结果表明,所提出的数据增强方法使异常流量场景下模型均方误差(MSE)降低71.44%,高流量峰值预测能力显著提升。相较于Informer对比算法,InformerGRU模型平均绝对误差(MAE)降低4.33%、方向准确度相对提升2.68%、在交通管制等典型场景下,所提模型MAE降低49.33%。

Abstract: Existing ride-hailing demand forecasting methods suffer significant accuracy degradation during non-routine traffic events due to insufficient global multimodal pattern capturing and inadequate abnormal flow modeling. To address this issue, a data augmentation method was proposed, integrating domain-adaptive fine-tuning of Llama3 with semantic event fusion. A quantitative representation system was constructed, incorporating event importance and congestion impact coefficients, converting unstructured event descriptions into structured numerical features. A dual-path InformerGRU (Informer with Gated Recurrent Unit)architecture was designed, combining the Informer encoder’s long-sequence global modeling capability with the local sequence dynamic capturing advantages of bidirectional Gated Recurrent Units (GRU). Multi-scale features are intelligently aggregated through an adaptive fusion layer. Real-world experimental results demonstrate that the proposed data augmentation method reduces mean squared error (MSE) by 71.44% in abnormal traffic flow scenarios, with enhanced peak prediction. Compared to Informer, InformerGRU model achieves 4.33% lower mean absolute error (MAE) and improves accuracy by 2.68%. In typical traffic control scenarios, the proposed model reduces MAE by 49.33%.

中图分类号: