《计算机应用》唯一官方网站

• •    下一篇

基于倒置特征金字塔网络的超像素分割算法

孙赫1,闫光辉1,加小红2   

  1. 1. 兰州交通大学
    2. 兰州交通大学 电子与信息工程学院
  • 收稿日期:2025-08-07 修回日期:2025-09-11 发布日期:2025-11-05 出版日期:2025-11-05
  • 通讯作者: 孙赫

Superpixel segmentation algorithm based on inverted feature pyramid network

  • Received:2025-08-07 Revised:2025-09-11 Online:2025-11-05 Published:2025-11-05

摘要: 超像素具有优异的图像表示能力和高效的计算效率,已经被广泛应用于后续计算机视觉任务中。然而,现有超像素分割算法未充分考虑语义信息与空间信息的融合关系,导致生成的超像素空间连贯性和语义一致性不足,在处理复杂场景图像时会出现模糊错分细节的问题。针对这一不足,文中提出了一种基于倒置特征金字塔网络的超像素分割算法(IFPNet),通过编码器和倒置特征金字塔解码器级联耦合,实现了端到端的多尺度语义信息与空间细节信息更好地融合。同时设计了一个以感知边界驱动的复合损失函数,进一步提升超像素的语义一致性。IFPNet在BSDS500、NYUv2和KITTI三个数据集上和简单线性迭代聚类超像素分割算法(SLIC)、超像素分割网络(SSN)、基于全卷积神经网络的超像素分割算法(SCN)等SOTA算法进行对比实验,其中在BSDS500数据集上可达分割精度(ASA)和边界精确率(BP)分别提升至0.9720和0.1306,在NYUv2数据集上可达分割精度(ASA)和边界精确率(BP)分别提升至0.9482和0.1999,在KITTI数据集上可达分割精度(ASA)、边界精确率(BP)和紧凑性(CO)分别提升至0.9655、0.1470、0.3720。实验结果表明生成的超像素不仅展现出较好的空间连贯性和语义一致性,同时在细节纹理区域的处理表现优越,充分验证了IFPNet的优越性能和泛化性能。

Abstract: Superpixels exhibit superior image representation capabilities and exceptional computational efficiency, making them widely adopted in downstream computer vision tasks. However, existing superpixel segmentation algorithms insufficiently account for the coupling interplay between semantic and spatial cues, resulting in suboptimal spatial coherence and semantic consistency of the generated superpixels and leading to erroneous delineation of fine details in complex scenes. To address these shortcomings, this paper proposes superpixel segmentation algorithm based on Inverted Feature Pyramid Network (IFPNet), an end-to-end architecture that fuses multi-scale semantic context with spatial detail through a cascaded coupling of an encoder and an inverted feature pyramid decoder. In addition, we introduce a Perceptual Boundary-Driven Composite Loss function to further enforce semantic consistency. Comprehensive experiments on the BSDS500, NYUv2, and KITTI datasets and compared with state-of-the-art (SOTA) algorithms (i.e., SLIC Superpixels Compared to State-of-the-Art Superpixel Methods (SLIC), Superpixel Sampling Networks (SSN), and Superpixel Segmentation with Fully Convolutional Networks (SCN)), demonstrate that IFPNet achieves state-of-the-art performance.: on BSDS500, it attains an Achievable Segmentation Accuracy (ASA) of 0.9720 and a Boundary Precision (BP) of 0.1306; on NYUv2, Achievable Segmentation Accuracy (ASA) and Boundary Precision (BP) reach 0.9482 and 0.1999, respectively; and on KITTI, Achievable Segmentation Accuracy (ASA), Boundary Precision (BP) and Compactness (CO) improve to 0.9655, 0.1470, and 0.3720. The experimental results confirm that the proposed IFPNet generates superpixels with enhanced spatial coherence, semantic fidelity, and superior preservation of detailed texture, underscoring the robustness and generalizability of IFPNet.

中图分类号: