《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (12): 3947-3956.DOI: 10.11772/j.issn.1001-9081.2024111677
收稿日期:2024-11-29
修回日期:2025-03-29
接受日期:2025-03-31
发布日期:2025-04-08
出版日期:2025-12-10
通讯作者:
马震
作者简介:况翔(1991—),男,贵州赫章人,讲师,主要研究方向:网络优化、深度学习、系统运维基金资助:
Xiang KUANG1, Zhen MA2,3(
), Wanchun ZHU1, Zhi ZHANG1, Yunfei CUI1
Received:2024-11-29
Revised:2025-03-29
Accepted:2025-03-31
Online:2025-04-08
Published:2025-12-10
Contact:
Zhen MA
About author:KUANG Xiang, born in 1991, lecturer. His research interests include network optimization,deep learning, system maintenance.Supported by:摘要:
为了在云计算中高效分配有限的网络资源以确保服务质量(QoS),并且同时提高资源利用率和管理效率,提出一种安全可靠性驱动的基于编解码的深度强化学习(ED-DRL)方法用于服务功能链(SFC)部署。该方法将SFC部署看作一个马尔可夫决策过程(MDP),采用图注意力网络(GAT)编码器和门控循环单元(GRU)解码器高效提取网络拓扑特征和节点间的依赖关系,并结合异步优势Actor-Critic(A3C)算法实现SFC部署策略的动态生成。针对安全可靠性的需求,重设计奖励函数,从而引导策略网络选择最优资源。仿真结果表明,ED-DRL能获得70.7%的接受率与0.063 5的平均收益,优于连续决策强化学习(CDRL)等对比方法。
中图分类号:
况翔, 马震, 朱万春, 张智, 崔云飞. 基于编解码结构强化学习的安全可靠服务功能链部署[J]. 计算机应用, 2025, 45(12): 3947-3956.
Xiang KUANG, Zhen MA, Wanchun ZHU, Zhi ZHANG, Yunfei CUI. Secure and reliable service function chain deployment based on encoder-decoder structured reinforcement learning[J]. Journal of Computer Applications, 2025, 45(12): 3947-3956.
| 符号 | 含义 | 符号 | 含义 |
|---|---|---|---|
| 物理网络p加权图 | SFC请求 | ||
| 网络节点集合 | 物理/SFC请求节点 | ||
| 网络链接集合 | 物理/SFC请求 | ||
| 物理节点 | SFC请求节点ni 资源 | ||
| 物理节点安全等级 | SFC请求 等级 | ||
| SFC请求i的时延 | 节点资源集合 |
表1 主要符号说明
Tab. 1 Explanation of main symbols
| 符号 | 含义 | 符号 | 含义 |
|---|---|---|---|
| 物理网络p加权图 | SFC请求 | ||
| 网络节点集合 | 物理/SFC请求节点 | ||
| 网络链接集合 | 物理/SFC请求 | ||
| 物理节点 | SFC请求节点ni 资源 | ||
| 物理节点安全等级 | SFC请求 等级 | ||
| SFC请求i的时延 | 节点资源集合 |
| 仿真参数 | 设置值 | 仿真参数 | 设置值 |
|---|---|---|---|
| 批量大小 | 128 | 奖励系数 | 0.125 |
| 资源的单价 | 0.001 | 折扣因子 | 0.93 |
| 带宽的单价 | 0.001 | 演员网络学习能力 | 0.000 25 |
| 演员网络数 | 4 | 评论家网络学习能力 | 0.000 5 |
表2 ED-DRL训练参数设置
Tab.2 Training parameter setting of ED-DRL
| 仿真参数 | 设置值 | 仿真参数 | 设置值 |
|---|---|---|---|
| 批量大小 | 128 | 奖励系数 | 0.125 |
| 资源的单价 | 0.001 | 折扣因子 | 0.93 |
| 带宽的单价 | 0.001 | 演员网络学习能力 | 0.000 25 |
| 演员网络数 | 4 | 评论家网络学习能力 | 0.000 5 |
| [1] | 乔文欣,卢昱,刘益岑,等. 空天地协同的边缘云服务功能链动态编排方法[J]. 西安电子科技大学学报, 2022, 49(2): 79-88. |
| QIAO W X, LU Y, LIU Y C, et al. Dynamic scheduling method for service function chains in space air terrestrial aided edge cloud networks[J]. Journal of Xidian University, 2022, 49(2): 79-88. | |
| [2] | ZHUANG W, YE Q, LYU F, et al. SDN/NFV-empowered future IoV with enhanced communication, computing, and caching[J]. Proceedings of the IEEE, 2020, 108(2): 274-291. |
| [3] | 畅海峰,嵩天,杨雅婷. NFV中单节点启发式资源分配方法[J]. 计算机工程与应用, 2020, 56(11): 105-111. |
| CHANG H F, SONG T, YANG Y T. Heuristic method of resource allocation on single node in NFV[J]. Computer Engineering and Applications, 2020, 56(11): 105-111. | |
| [4] | YAO H, MA S, WANG J, et al. A continuous-decision virtual network embedding scheme relying on reinforcement learning[J]. IEEE Transactions on Network and Service Management, 2020, 17(2): 864-875. |
| [5] | FISCHER A, BOTERO J F, BECK M T, et al. Virtual network embedding: a survey[J]. IEEE Communications Surveys and Tutorials, 2013, 15(4): 1888-1906. |
| [6] | YANG L, ZHANG Y, ZHENG G, et al. Policy optimization with stochastic mirror descent[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 8823-8831. |
| [7] | 梁俊斌,黄少东,吴旭,等. 绿色移动边缘网络中可靠的虚拟网络功能部署技术研究[J]. 计算机应用研究, 2023, 40(12): 3521-3528, 3538. |
| LIANG J B, HUANG S D, WU X, et al. Research on reliable virtual network function deployment technology mobile edge networks[J]. Application Research of Computers, 2023, 40(12): 3521-3528, 3538. | |
| [8] | ZHU Y, AMMAR M. Algorithms for assigning substrate network resources to virtual network components[C]// Proceedings of the 25th IEEE International Conference on Computer Communications. Piscataway: IEEE, 2006: 1-12. |
| [9] | 许道强,邹云峰,邓君华,等. 面向NUMA架构的虚拟网络功能部署技术研究[J]. 计算机工程与应用, 2019, 55(21): 115-121, 157. |
| XU D Q, ZOU Y F, DENG J H, et al. Research on virtual network function chain deployment for NUMAS systems[J]. Computer Engineering and Applications, 2019, 55(21): 115-121, 157. | |
| [10] | CAO H, YANG L, LIU Z, et al. Exact solutions of VNE: a survey[J]. China Communications, 2016, 13(6): 48-62. |
| [11] | SUN Q, LU P, LU W, et al. Forecast-assisted NFV service chain deployment based on affiliation-aware vNF placement[C]// Proceedings of the 2016 IEEE Global Communications Conference. Piscataway: IEEE, 2016: 1-6. |
| [12] | YU M, YI Y, REXFORD J, et al. Rethinking virtual network embedding: Substrate support for path splitting and migration[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 17-29. |
| [13] | CHENG X, SU S, ZHANG Z, et al. Virtual network embedding through topology-aware node ranking[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(2): 38-47. |
| [14] | JIN P, FEI X, ZHANG Q, et al. Latency-aware VNF chain deployment with efficient resource reuse at network edge[C]// Proceedings of the 2020 IEEE Conference on Computer Communications. Piscataway: IEEE, 2020: 267-276. |
| [15] | FAN W, XIAO F, LV M, et al. Node essentiality assessment and distributed collaborative virtual network embedding in datacenters[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(4): 1265-1280. |
| [16] | ZHANG P, YAO H, LIU Y. Virtual network embedding based on computing, network, and storage resource constraints[J]. IEEE Internet of Things Journal, 2018, 5(5): 3298-3304. |
| [17] | DEHURY C K, SAHOO P K. DYVINE: fitness-based dynamic virtual network embedding in cloud computing[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1029-1045. |
| [18] | XIAO Y, ZHANG Q, LIU F, et al. NFVdeep: adaptive online service function chain deployment with deep reinforcement learning[C]// Proceedings of the IEEE/ACM 27th International Symposium on Quality of Service. New York: ACM, 2019: No.21. |
| [19] | 王晓,唐伦,贺小雨,等. 基于深度强化学习的服务功能链多维资源优化[J]. 计算机工程与应用, 2021, 57(4): 68-76. |
| WANG X, TANG L, HE X Y, et al. Multi-dimensional resource optimization of service function chain based on deep reinforcement learning[J]. Computer Engineering and Applications, 2021, 57(4): 68-76. | |
| [20] | SOLOZABAL R, CEBERIO J, SANCHOYERTO A, et al. Virtual network function placement optimization with deep reinforcement learning[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(2): 292-303. |
| [21] | WANG T, FAN Q, LI X, et al. DRL-SFCP: adaptive service function chains placement with deep reinforcement learning[C]// Proceedings of the 2021 IEEE International Conference on Communications. Piscataway: IEEE, 2021: 1-6. |
| [22] | ZHANG P, SU Y, WANG J, et al. Reinforcement learning assisted bandwidth aware virtual network resource allocation[J]. IEEE Transactions on Network and Service Management, 2022, 19(4): 4111-4123. |
| [23] | ZHANG X, CUI L, TSO F P, et al. Dapper: deploying service function chains in the programmable data plane via deep reinforcement learning[J]. IEEE Transactions on Services Computing, 2023, 16(4): 2532-2544. |
| [24] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2024-11-11]. . |
| [25] | MNIH V M, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 1928-1937. |
| [26] | 朱子怡,张建辉,曾俊杰,等. 基于深度强化学习的安全感知服务功能链部署方法[J/OL]. 计算机科学 [2024-11-23].. |
| ZHU Z Y, ZHANG J H, ZENG J J, et al. Security-aware service function chain deployment method based on deep reinforcement learning [J/OL]. Computer Science [2024-11-23].. | |
| [27] | ZENG J, DING D, KANG K, et al. Adaptive DRL-based virtual machine consolidation in energy-efficient cloud data center[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(11): 2991-3002. |
| [28] | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2024-11-11]. . |
| [29] | HE N, YANG S, LI F, et al. Leveraging deep reinforcement learning with attention mechanism for virtual network function placement and routing[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(4): 1186-1201. |
| [30] | WAXMAN B M. Routing of multipoint connections[J]. IEEE Journal on Selected Areas in Communications, 1988, 6(9): 1617-1622. |
| [31] | GONG L, WEN Y, ZHU Z, et al. Toward profit-seeking virtual network embedding algorithm via global resource capacity[C]// Proceedings of the 2014 IEEE Conference on Computer Communications. Piscataway: IEEE, 2014: 1-9. |
| [1] | 俞凯乐, 廖家俊, 毛嘉莉, 黄小鹏. 多约束条件下钢铁物流车货匹配的多目标优化[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2477-2483. |
| [2] | 闫家鑫, 陈艳平, 杨卫哲, 黄瑞章, 秦永彬. 基于特征组合的异构图注意力网络关系抽取[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2470-2476. |
| [3] | 张硕, 孙国凯, 庄园, 冯小雨, 王敬之. 面向区块链节点分析的eclipse攻击动态检测方法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2428-2436. |
| [4] | 薛天宇, 李爱萍, 段利国. 联合任务卸载和资源优化的车辆边缘计算方案[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1766-1775. |
| [5] | 许鹏程, 何磊, 李川, 钱炜祺, 赵暾. 基于Transformer的深度符号回归方法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1455-1463. |
| [6] | 李嘉欣, 莫思特. 基于MiniRBT-LSTM-GAT与标签平滑的台区电力工单分类[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1356-1362. |
| [7] | 王华华, 黄梁, 陈甲杰, 方杰宁. 基于深度强化学习的低轨卫星多波束子载波动态分配算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 571-577. |
| [8] | 王靖, 方旭明. Wi-Fi7多链路通感一体化的功率和信道联合智能分配算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 563-570. |
| [9] | 曾君, 童英华, 王得芳. 基于累积概率波动和自动化聚类的异常检测方法[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 3864-3871. |
| [10] | 许浩翔, 余敦辉, 邓怡辰, 肖奎. 基于分层强化学习的知识图谱约束问答模型[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 3764-3770. |
| [11] | 王诚熠, 徐磊, 陈晋音, 邱洪君. 基于自适应扰动的网络防测绘方法[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 3896-3908. |
| [12] | 陈晓娟, 张薇. 基于强化学习的无人机乡村末端配送任务分配[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 4055-4063. |
| [13] | 卫琳, 张世豪, 和孟佯. 面向算力网络的工作流任务优化与节能卸载方法[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 3916-3924. |
| [14] | 卫琳, 李金阳, 王亚杰, 和孟佯. 算力网络中基于多维资源度量和重调度的高可靠匹配方法[J]. 《计算机应用》唯一官方网站, 2025, 45(11): 3632-3641. |
| [15] | 周帅, 符浩, 刘伟. 基于时空Transformer的混合回报隐式Q学习人群导航[J]. 《计算机应用》唯一官方网站, 2025, 45(11): 3666-3673. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||