1 |
杨军. 中药材鉴定中应用显微鉴定技术的研究进展[J]. 光明中医, 2021, 36(16):2828-2830.
|
|
YANG J. Research progress on application of microscopic identification technology in the identification of Chinese medicinal materials[J]. Guangming Journal of Chinese Medicine, 2021, 36(16):2828-2830.
|
2 |
王耐,卢文彪,凌秀华,等. 牛膝和川牛膝药材的特征提取与图像识别[J]. 中国药房, 2017, 28(12):1670-1673.
|
|
WANG N, LU W B, LING X H, et al. Feature extraction and image recognition of Achyrantha bidentata and Cyathula officinalis[J]. China Pharmacy, 2017, 28(12):1670-1673.
|
3 |
王凤梅,卢文彪,陈仕妍. 基于灰度匹配模板的中药材显微图像识别[J]. 中国实验方剂学杂志, 2019, 25(11):167-172.
|
|
WANG F M, LU W B, CHEN S Y. Microscopic image recognition of traditional Chinese medicinal materials based on grayscale matching templates[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2019, 25(11): 167-172.
|
4 |
王一丁,姚毅,李耀利,等. 基于改进动态ReLU和注意力机制模型的中药材粉末显微图像识别研究[J]. 计算机应用研究, 2021, 38(9):2861-2865, 2870.
|
|
WANG Y D, YAO Y, LI Y L, et al. Research on microscopic image recognition of Chinese medicinal materials powder based on improved dynamic ReLU and attention mechanism model[J]. Application Research of Computers, 2021, 38(9) : 2861-2865, 2870.
|
5 |
王一丁,石铎,李耀利,等. 基于SqueezeNet深度网络的中药材粉末显微特征图像识别研究[J]. 电子显微学报, 2019, 38(2):130-138.
|
|
WANG Y D, SHI D, LI Y L, et al. Studies on identification of microscopic images of Chinese medicinal materials powder based on SqueezeNet deep network[J]. Journal of Chinese Electron Microscopy Society, 2019, 38(2):130-138.
|
6 |
王一丁,姚毅,李耀利,等. 改进EfficientNet的表皮细胞图像识别研究[J]. 计算机工程与应用, 2022, 58(11):200-208.
|
|
WANG Y D, YAO Y, LI Y L, et al. Epidermal cell image recognition research of improved EfficientNet[J]. Computer Engineering and Applications, 2012, 58(11):200-208.
|
7 |
LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
8 |
VASWANI A, SHAZEER N, PARMER N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
9 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [EB/OL]. [2024-04-15]. .
|
10 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
|
11 |
FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[C]// Proceedings of the 1995 European Conference on Computational Learning Theory, LNCS 904. Berlin: Springer, 1995: 23-37.
|
12 |
WOO S, DEBNATH S, HU R, et al. ConvNeXt V2: co-designing and scaling ConvNets with masked autoencoders[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 16133-16142.
|
13 |
LOU M, ZHOU H Y, YANG S, et al. TransXNet: learning both global and local dynamics with a dual dynamic token mixer for visual recognition[EB/OL]. [2024-04-15]..
|
14 |
BASTIDAS A A, TANG H. Channel attention networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019: 881-888.
|
15 |
WANG H, FAN Y, WANG Z, et al. Parameter-free spatial attention network for person re-identification[EB/OL]. [2024-04-15]..
|
16 |
CHOU P Y, KAO Y Y, LIN C H. Fine-grained visual classification with high-temperature refinement and background suppression[EB/OL]. [2024-04-15]..
|
17 |
HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. [2024-04-15]..
|
18 |
LIU Z, MAO H, WU C Y, et al. A ConvNet for the 2020s[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11966-11976.
|
19 |
LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002.
|
20 |
PENG Z, HUANG W, GU S, et al. Conformer: local features coupling global representations for visual recognition[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 357-366.
|