[1] |
BAI L, LIANG J, CAO F. Semi-supervised clustering with constraints of different types from multiple information sources [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(9): 3247-3258.
|
[2] |
LI J, LIN C, HUANG R, et al. Intention-guided deep semi-supervised document clustering via metric learning [J]. Journal of King Saud University — Computer and Information Sciences, 2023, 35(1): 416-425.
|
[3] |
XIAO X, HOU H, DING S. Semi-supervised deep density clustering [J]. Applied Soft Computing, 2023, 148: No.110903.
|
[4] |
QIN X, YUAN C, JIANG J, et al. Deep semi-supervised clustering based on pairwise constraints and sample similarity [J]. Pattern Recognition Letters, 2024, 178: 1-6.
|
[5] |
LeCUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
|
[6] |
RUSK N. Deep learning [J]. Nature Methods, 2016, 13(1): No.3707.
|
[7] |
DONG S, WANG P, ABBAS K. A survey on deep learning and its applications [J]. Computer Science Review, 2021, 40: No.100379.
|
[8] |
LI P, PEI Y, LI J. A comprehensive survey on design and application of autoencoder in deep learning [J]. Applied Soft Computing, 2023, 138: No.110176.
|
[9] |
WANG Y, YAO H, ZHAO S. Auto-encoder based dimensionality reduction [J]. Neurocomputing, 2016, 184: 232-242.
|
[10] |
XIE J, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis [C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 478-487.
|
[11] |
GUO X, GAO L, LIU X, et al. Improved deep embedded clustering with local structure preservation [C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. New York: ACM, 2017: 1753-1759.
|
[12] |
WANG Y, CHANG D, FU Z, et al. Learning a bi-directional discriminative representation for deep clustering [J]. Pattern Recognition, 2023, 137: No.109237.
|
[13] |
LIN M, WEN K, ZHU X, et al. Graph autoencoder with preserving node attribute similarity [J]. Entropy, 2023, 25(4): No.567.
|
[14] |
CHEN B, XU S, XU H, et al. Structure-aware deep clustering network based on contrastive learning [J]. Neural Networks, 2023, 167: 118-128.
|
[15] |
CAI J, HAO J, YANG H, et al. A review on semi-supervised clustering [J]. Information Sciences, 2023, 632: 164-200.
|
[16] |
XU X, HOU H, DING S. Semi-supervised deep density clustering [J]. Applied Soft Computing, 2023, 148: No.110903.
|
[17] |
ZHANG D, YANG Y, QIU H. Two-stage semi-supervised clustering ensemble framework based on constraint weight [J]. International Journal of Machine Learning and Cybernetics, 2023, 14(2): 567-586.
|
[18] |
TAGHIZABET A, TANHA J, AMINI A, et al. A semi-supervised clustering approach using labeled data [J]. Scientia Iranica, 2023, 30(1): 104-115.
|
[19] |
姜春茂,吴鹏,李志聪.基于Seeds集和成对约束的半监督三支聚类集成[J].计算机应用,2023, 43(5): 1481-1488.
|
|
JIANG C M, WU P, LI Z C. Semi-supervised three-way clustering ensemble based on Seeds set and pairwise constraints [J]. Journal of Computer Applications, 2023, 43(5): 1481-1488.
|
[20] |
MASUD M A, HUANG J Z, ZHONG M, et al. Generate pairwise constraints from unlabeled data for semi-supervised clustering [J]. Data and Knowledge Engineering, 2019, 123: No.101715.
|
[21] |
MEI J P, LV H, CAO J, et al. Pairwise constrained fuzzy clustering: relation, comparison and parallelization [J]. International Journal of Fuzzy Systems, 2019, 21(6): 1938-1949.
|
[22] |
FORESTIER G, WEMMERT C. Semi-supervised learning using multiple clusterings with limited labeled data [J]. Information Sciences, 2016, 361/362: 48-65.
|
[23] |
VOUROS A, VASILAKI E. A semi-supervised sparse k-means algorithm [J]. Pattern Recognition Letters, 2021, 142: 65-71.
|
[24] |
WAGSTAFF K, CARDIE C, ROGERS S, et al. Constrained k-means clustering with background knowledge [C]// Proceedings of the 18th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc., 2001: 577-584.
|
[25] |
YANG Y, TAN W, LI T, et al. Consensus clustering based on constrained self-organizing map and improved Cop-Kmeans ensemble in intelligent decision support systems [J]. Knowledge-Based Systems, 2012, 32: 101-115.
|
[26] |
WANG Y, ZOU J, WANG K, et al. Semi-supervised deep embedded clustering with pairwise constraints and subset allocation [J]. Neural Networks, 2023, 164: 310-322.
|
[27] |
CHEN Z, LI C, GAO J, et al. Semisupervised deep embedded clustering with adaptive labels [J]. Scientific Programming, 2021, 2021: No.6613452.
|
[28] |
SALADI P, GUNTUPALLI R M, PUPPALA S K, et al. Prioritized semi-supervised deep embedded clustering [C]// Proceedings of the 2022 International Conference on Innovative Trends in Information Technology. Piscataway: IEEE, 2022: 1-6.
|
[29] |
REN Y, HU K, DAI X, et al. Semi-supervised deep embedded clustering [J]. Neurocomputing, 2019, 325: 121-130.
|
[30] |
YANG X, DENG C, ZHENG F, et al. Deep spectral clustering using dual autoencoder network [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4061-4070.
|
[31] |
CAI J, WANG S, GUO W. Unsupervised embedded feature learning for deep clustering with stacked sparse auto-encoder [J]. Expert Systems with Applications, 2021, 186: No.115729.
|
[32] |
BO D, WANG X, SHI C, et al. Structural deep clustering network [C]// Proceedings of the Web Conference 2020. New York: ACM, 2020: 1400-1410.
|
[33] |
KADHIM A I, CHEAH Y N, AHAMED N H. Text document preprocessing and dimension reduction techniques for text document clustering [C]// Proceedings of the 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology. Piscataway: IEEE, 2014: 69-73.
|
[34] |
WANG X, JI H, SHI C, et al. Heterogeneous graph attention network [C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2022-2032.
|
[35] |
BAI R, HUANG R, CHEN Y, et al. Deep multi-view document clustering with enhanced semantic embedding [J]. Information Sciences, 2021, 564: 273-287.
|
[36] |
XU W, LIU X, GONG Y. Document clustering based on non-negative matrix factorization [C]// Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2003: 267-273.
|
[37] |
ESTÉVEZ P A, TESMER M, PEREZ C A, et al. Normalized mutual information feature selection [J]. IEEE Transactions on Neural Networks, 2009, 20(2): 189-201.
|
[38] |
XIA R, PAN Y, DU L, et al. Robust multi-view spectral clustering via low-rank and sparse decomposition [C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2014: 2149-2155.
|
[39] |
HARTIGAN J A, WONG M A. A k-means clustering algorithm [J]. Journal of the Royal Statistical Society Series C: Applied Statistics, 1979, 28(1): 100-108.
|
[40] |
FOGEL S, AVERBUCH-ELOR H, COHEN-OR D, et al. Clustering-driven deep embedding with pairwise constraints [J]. IEEE Computer Graphics and Applications, 2019, 39(4): 16-27.
|
[41] |
CHAVOSHINEJAD J, SEYEDI S A, TAB F A, et al. Self-supervised semi-supervised nonnegative matrix factorization for data clustering [J]. Pattern Recognition, 2023, 137: No.109282.
|
[42] |
VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE [J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605.
|