《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (7): 2169-2179.DOI: 10.11772/j.issn.1001-9081.2024070927
收稿日期:
2024-07-03
修回日期:
2024-10-17
接受日期:
2024-10-18
发布日期:
2025-07-10
出版日期:
2025-07-10
通讯作者:
许新征
作者简介:
赵小阳(1999—),女,宁夏吴忠人,硕士,CCF会员,主要研究方向:深度神经网络的可解释性、物联网基金资助:
Xiaoyang ZHAO1, Xinzheng XU2(), Zhongnian LI2
Received:
2024-07-03
Revised:
2024-10-17
Accepted:
2024-10-18
Online:
2025-07-10
Published:
2025-07-10
Contact:
Xinzheng XU
About author:
ZHAO Xiaoyang, born in 1999, M. S. Her research interests include interpretability of deep neural networks, internet of things.Supported by:
摘要:
在物联网(IoT)时代,人工智能(AI)与IoT的结合已经成为推动技术发展和应用创新的重要趋势。随着设备连接数量的指数级增长,提升终端用户对智能系统的信任度变得尤为关键。可解释人工智能(XAI)指能提供它们的决策过程和结果解释的AI系统。XAI的出现推动了AI技术的发展,并增强了用户对AI系统的信任。因此,对IoT应用中的XAI研究进行综述。首先,介绍IoT和XAI的相关背景及意义;其次,介绍XAI的定义及关键技术;接着,介绍传统AI驱动的IoT应用的最新进展和XAI驱动的IoT应用的最新进展;最后,对XAI在IoT应用中的未来发展方向和相关挑战分别进行总结和展望。
中图分类号:
赵小阳, 许新征, 李仲年. 物联网应用中的可解释人工智能研究综述[J]. 计算机应用, 2025, 45(7): 2169-2179.
Xiaoyang ZHAO, Xinzheng XU, Zhongnian LI. Research review on explainable artificial intelligence in internet of things applications[J]. Journal of Computer Applications, 2025, 45(7): 2169-2179.
感知类别 | 应用场景 | 代表性数据集 |
---|---|---|
通用场景感知 | 图像识别 | ImageNet、CIFAR10/100 |
目标检测/追踪 | COCO、MOT | |
文本识别 | LSVT | |
以人为主体感知 | 人脸识别 | FFHQ、YouTube Faces DB |
指纹识别 | FVC2000 | |
姿态估计 | COCO、MPII | |
手势识别 | DVS128 | |
动作识别 | ActivityNet | |
听觉感知 | 语音识别 | CHiME-3、VoxCeleb |
说话人识别 | TIMIT APCSC、Common Voice | |
自然语言处理 | 机器翻译 | TedTalks、WMT |
多媒体分析 | 图像字幕 | COCO、Flickr30k |
跨媒体检索 | PKU XMediaNet | |
3D感知 | 深度估计 | KITTI、NYU Depth Dataset V2 |
定位 | KITTI | |
地图构建 | TUM Visual-Inertial |
表1 AIoT感知应用场景及代表性数据集
Tab. 1 AIoT perception application scenarios and representative datasets
感知类别 | 应用场景 | 代表性数据集 |
---|---|---|
通用场景感知 | 图像识别 | ImageNet、CIFAR10/100 |
目标检测/追踪 | COCO、MOT | |
文本识别 | LSVT | |
以人为主体感知 | 人脸识别 | FFHQ、YouTube Faces DB |
指纹识别 | FVC2000 | |
姿态估计 | COCO、MPII | |
手势识别 | DVS128 | |
动作识别 | ActivityNet | |
听觉感知 | 语音识别 | CHiME-3、VoxCeleb |
说话人识别 | TIMIT APCSC、Common Voice | |
自然语言处理 | 机器翻译 | TedTalks、WMT |
多媒体分析 | 图像字幕 | COCO、Flickr30k |
跨媒体检索 | PKU XMediaNet | |
3D感知 | 深度估计 | KITTI、NYU Depth Dataset V2 |
定位 | KITTI | |
地图构建 | TUM Visual-Inertial |
心血管疾病预测分类模型 | AUC值 | |
---|---|---|
传统机器学习算法驱动模型 | 基于自适应算法AdaBoost | 75.0 |
结合朴素贝叶斯的多模态整合框架 | 79.9 | |
基于逻辑回归算法LR和带径向基函数的支持向量机算法SVM | 87.2 | |
基于监督学习的环境辅助生活预测模型 | 83.0 | |
XAI驱动模型 | 89.0 |
表2 各类心血管疾病预测分类模型的AUC值比较 (%)
Tab. 2 Comparison of AUC values of various cardiovascular disease prediction classification models
心血管疾病预测分类模型 | AUC值 | |
---|---|---|
传统机器学习算法驱动模型 | 基于自适应算法AdaBoost | 75.0 |
结合朴素贝叶斯的多模态整合框架 | 79.9 | |
基于逻辑回归算法LR和带径向基函数的支持向量机算法SVM | 87.2 | |
基于监督学习的环境辅助生活预测模型 | 83.0 | |
XAI驱动模型 | 89.0 |
[1] | ABBASI J S, BASHIR F, QURESHI K N, et al. Deep learning-based feature extraction and optimizing pattern matching for intrusion detection using finite state machine [J]. Computers and Electrical Engineering, 2021, 92: No.107094. |
[2] | JAN B, FARMAN H, KHAN M, et al. Deep learning in big data analytics: a comparative study [J]. Computers and Electrical Engineering, 2019, 75: 275-287. |
[3] | PRATES R M, CRUZ R, MAROTTA A P, et al. Insulator visual non-conformity detection in overhead power distribution lines using deep learning [J]. Computers and Electrical Engineering, 2019, 78: 343-355. |
[4] | BALAHA H M, SAIF M, TAMER A, ABDELHAY E H, et al. Hybrid deep learning and genetic algorithms approach (HMB-DLGAHA) for the early ultrasound diagnoses of breast cancer [J]. Neural Computing and Applications, 2022, 34(11): 8671-8695. |
[5] | KILICARSLAN S, CELIK M, SAHIN Ş, et al. Hybrid models based on genetic algorithm and deep learning algorithms for nutritional anemia disease classification [J]. Biomedical Signal Processing and Control, 2021, 63: No.102231. |
[6] | PAN Y, YANG Y, LI W. A deep learning trained by genetic algorithm to improve the efficiency of path planning for data collection with multi-UAV [J]. IEEE Access, 2021, 9: 7994-8005. |
[7] | IVANOVS M, KADIKIS R, OZOLS K. Perturbation-based methods for explaining deep neural networks: a survey [J]. Pattern Recognition Letters, 2021, 150: 228-234. |
[8] | MOHSENI S, ZAREI N, RAGAN E D. A multidisciplinary survey and framework for design and evaluation of explainable AI systems [J]. ACM Transactions on Interactive Intelligent Systems, 2021, 11(3/4): No.24. |
[9] | VASSILIADES A, BASSILIADES N, PATKOS T. Argumentation and explainable artificial intelligence: a survey [J]. The Knowledge Engineering Review, 2021, 36: No.e5. |
[10] | NAZAR M, ALAM M M, YAFI E, et al. A systematic review of human-computer interaction and explainable artificial intelligence in healthcare with artificial intelligence techniques [J]. IEEE Access, 2021, 9: 153316-153348. |
[11] | SRINIVASU P N, SANDHYA N, JHAVERI R H, et al. From blackbox to explainable AI in healthcare: existing tools and case studies [J/OL]. Mobile Information Systems, 2022 [2024-05-10]. . |
[12] | TJOA E, GUAN C. A survey on Explainable Artificial Intelligence (XAI): toward medical XAI [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(11): 4793-4813. |
[13] | JIMÉNEZ-LUNA J, GRISONI F, SCHNEIDER G. Drug discovery with explainable artificial intelligence [J]. Nature Machine Intelligence, 2020, 2(10): 573-584. |
[14] | KUTE D V, PRADHAN B, SHUKLA N, et al. Deep learning and explainable artificial intelligence techniques applied for detecting money laundering — a critical review [J]. IEEE Access, 2021, 9: 82300-82317. |
[15] | ZHOU L, SHI X, BAO Y. Explainable artificial intelligence for digital finance and consumption upgrading [J]. Finance Research Letters, 2023, 58(Pt C): No.104489. |
[16] | SABHARWAL R, MIAH S J, WAMBA S F, et al. Extending application of explainable artificial intelligence for managers in financial organizations [EB/OL]. [2024-09-01]. . |
[17] | KOLEKAR S, GITE S, PRADHAN B, et al. Explainable AI in scene understanding for autonomous vehicles in unstructured traffic environments on Indian roads using the inception U-Net model with Grad-CAM visualization [J]. Sensors, 2022, 22(24): No.9677. |
[18] | MANKODIYA H, OBAIDAT M S, GUPTA R, et al. XAI-AV: explainable artificial intelligence for trust management in autonomous vehicles [C]// Proceedings of the 2021 International Conference on Communications, Computing, Cybersecurity, and Informatics. Piscataway: IEEE, 2021: 1-5. |
[19] | ATAKISHIYEV S, SALAMEH M, YAO H, et al. Explainable artificial intelligence for autonomous driving: a comprehensive overview and field guide for future research directions [J]. IEEE Access, 2024, 12: 101603-101625. |
[20] | WARREN A, HILLAS A. Friend or frenemy? the role of trust in human-machine teaming and lethal autonomous weapons systems [J]. Small Wars and Insurgencies, 2020, 31(4): 822-850. |
[21] | DEEKS A. The judicial demand for explainable artificial intelligence [J]. Columbia Law Review Association, 2019, 119(7): 1829-1850. |
[22] | ZOLANVARI M, YANG Z, KHAN K, et al. TRUST XAI: model-agnostic explanations for AI with a case study on IIoT security [J]. IEEE Internet of Things Journal, 2023, 10(4): 2967-2978. |
[23] | GUNNING D, AHA D W. DARPA’s Explainable Artificial Intelligence (XAI) program [J]. AI Magazine, 2019, 40(2): 44-58. |
[24] | EHSAN U, WINTERSBERGER P, LIAO Q V, et al. Operationalizing human-centered perspectives in explainable AI [C]// Proceedings of the Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2021: No.94. |
[25] | LIPTON Z C. The mythos of model interpretability [J]. Communications of the ACM, 2018, 61(10): 36-43. |
[26] | JAVED A R, AHMED W, PANDYA S, et al. A survey of explainable artificial intelligence for smart cities [J]. Electronics, 2023, 12(4): No.1020. |
[27] | FAN F L, XIONG J, LI M, et al. On interpretability of artificial neural networks: a survey [J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5(6): 741-760. |
[28] | SIMONYAN K, VEDALDI A, ZISSERMAN A. Deep inside convolutional networks: visualising image classification models and saliency maps [EB/OL]. [2024-07-27]. . |
[29] | ZAFAR M R, KHAN N. Deterministic local interpretable model-agnostic explanations for stable explainability [J]. Machine Learning and Knowledge Extraction, 2021, 3(3): 525-541. |
[30] | ANTWARG L, MILLER R M, SHAPIRA B, et al. Explaining anomalies detected by autoencoders using shapley additive explanations [J]. Expert Systems with Applications, 2021, 186: No.115736. |
[31] | BACH S, BINDER A, MONTAVON G, et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation [J]. PLoS ONE, 2015, 10(7): No.e0130140. |
[32] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 618-626. |
[33] | MISHRA P. Model explainability and interpretability [M]// Practical explainable AI using python: artificial intelligence model explanations using Python-based libraries, extensions, and frameworks. Berkeley: Apress, 2022: 1-22. |
[34] | WANG J, LIU H, WANG X, et al. Interpretable image recognition by constructing transparent embedding space [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 875-884. |
[35] | ALVAREZ-MELIS D, JAAKKOLA T S. Towards robust interpretability with self-explaining neural networks [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 7786-7795. |
[36] | CHEN C, LI O, TAO C, et al. This looks like that: deep learning for interpretable image recognition [C]// Proceedings of the 33rd Conference on Advances in Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 8930-8941. |
[37] | DONNELLY J, BARNETT A J, CHEN C. Deformable ProtoPNet: an interpretable image classifier using deformable prototypes [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 10255-10265. |
[38] | PENG X, LI Y, TSANG I W, et al. XAI beyond classification: interpretable neural clustering [J]. Journal of Machine Learning Research, 2022, 23: 1-28. |
[39] | ZHU H, PENG X, CHANDRASEKHAR V, et al. DehazeGAN: when image dehazing meets differential programming [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 1234-1240. |
[40] | MESKE C, BUNDE E, SCHNEIDER J, et al. Explainable artificial intelligence: objectives, stakeholders, and future research opportunities [J]. Information Systems Management, 2022, 39(1): 53-63. |
[41] | ZHANG J, TAO D. Empowering things with intelligence: a survey of the progress, challenges, and opportunities in artificial intelligence of things [J]. IEEE Internet of Things Journal, 2021, 8(10): 7789-7817. |
[42] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
[43] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. |
[44] | YANG K, LIU J, YANG D, et al. A novel efficient multi-view traffic-related object detection framework [C]// Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. |
[45] | LI Z, YANG Z, GAO Y, et al. 6DoF-3D: efficient and accurate 3D object detection using six degrees-of-freedom for autonomous driving [J]. Expert Systems with Applications, 2024, 238(Pt F): No.122319. |
[46] | CHEN S, ZHANG Z, ZHANG L, et al. A semi-supervised learning framework combining CNN and multiscale transformer for traffic sign detection and recognition [J]. IEEE Internet of Things Journal, 2024, 11(11): 19500-19519. |
[47] | ANTONANTE P, NILSEN H G, CARLONE L. Monitoring of perception systems: deterministic, probabilistic, and learning-based fault detection and identification [J]. Artificial Intelligence, 2023, 325: No.103998. |
[48] | CHENG C H, LUTTENBERGER M, YAN R. Runtime monitoring DNN-based perception: (via the lens of formal methods) [C]// Proceedings of the 2023 International Conference on Runtime Verification, LNCS 14245. Cham: Springer, 2023: 428-446. |
[49] | CONG P, FENG H, LI S, et al. A visual detection algorithm for autonomous driving road environment perception [J]. Engineering Applications of Artificial Intelligence, 2024, 133(Pt A): No. 108034. |
[50] | LU Y, JIANG B, LIU N, et al. CrossPrune: cooperative pruning for camera-LiDAR fused perception models of autonomous driving [J]. Knowledge-Based Systems, 2024, 289: No.111522. |
[51] | PARK H, LEE Y, KO J. Enabling real-time sign language translation on mobile platforms with on-board depth cameras [J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2021, 5(2): No.77. |
[52] | THAQI E, MANTAWY M O, KASNECI E. SARA: smart AI reading assistant for reading comprehension [C]// Proceedings of the 2024 Symposium on Eye Tracking Research and Applications. New York: ACM, 2024: No.48. |
[53] | LI M, LV T, CHEN J, et al. TrOCR: Transformer-based optical character recognition with pre-trained models [C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 13094-13102. |
[54] | CHI J, KIM ON C, ZHANG H, et al. A review of deep convolutional neural networks in mobile face recognition [J]. International Journal of Interactive Mobile Technologies, 2023, 17(23): 4-19. |
[55] | PATTNAIK I, DEV A, MOHAPATRA A K. A face recognition taxonomy and review framework towards dimensionality, modality and feature quality [J]. Engineering Applications of Artificial Intelligence, 2023, 126(Pt C): No.107056. |
[56] | APPATI J K, NARTEY P K, YAOKUMAH W, et al. A systematic review of fingerprint recognition system development [J]. International Journal of Software Science and Computational Intelligence, 2022, 14(1): 1-17. |
[57] | HELMSTETTER S, MATTHIESEN S. Human posture estimation: a systematic review on force-based methods — analyzing the differences in required expertise and result benefits for their utilization [J]. Sensors, 2023, 23(21): No.8997. |
[58] | TCHANTCHANE R, ZHOU H, ZHANG S, et al. A review of hand gesture recognition systems based on noninvasive wearable sensors [J]. Advanced Intelligent Systems, 2023, 5(10): No.2300207. |
[59] | SUN Z, KE Q, RAHMANI H, et al. Human action recognition from various data modalities: a review [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3200-3225. |
[60] | HE Y, SENG K P, ANG L M. Multimodal sensor-input architecture with deep learning for audio-visual speech recognition in wild [J]. Sensors, 2023, 23(4): No.1834. |
[61] | PARK S W, KIM D, JOE M C. Cotatron: transcription-guided speech encoder for any-to-many voice conversion without parallel data [C]// Proceedings of the INTERSPEECH 2020. [S.l.]: International Speech Communication Association, 2020: 4696-4700. |
[62] | MUSTAFA H H, DARWISH N R, HEFNY H A. Automatic speech emotion recognition: a systematic literature review [J]. International Journal of Speech Technology, 2024, 27(1): 267-285. |
[63] | VYAKARANAM A, MAUL T, RAMAYAH B. A review on speech emotion recognition for late deafened educators in online education [J]. International Journal of Speech Technology, 2024, 27(1): 29-52. |
[64] | ZHANG Y, WANG J, CHEN B. Detecting false data injection attacks in smart grids: a semi-supervised deep learning approach [J]. IEEE Transactions on Smart Grid, 2021, 12(1): 623-634. |
[65] | SAEED A, SALIM F D, OZCELEBI T, et al. Federated self-supervised learning of multi-sensor representations for embedded intelligence [J]. IEEE Internet of Things Journal, 2021, 8(2): 1030-1040. |
[66] | D’INCECCO M, SQUARTINI S, ZHONG M. Transfer learning for non-intrusive load monitoring [J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1419-1429. |
[67] | BARGOTI S, UNDERWOOD J. Deep fruit detection in orchards [C]// Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2017: 3626-3633. |
[68] | WANG Q, GAO J, LIN W, et al. Learning from synthetic data for crowd counting in the wild [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8190-8199. |
[69] | GIUFFRIDA M V, DOBRESCU A, DOERNER P, et al. Leaf counting without annotations using adversarial unsupervised domain adaptation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019: 2590-2599. |
[70] | ZHANG Z, WANG Y, LIU S. Cross-domain person re-identification using Dual Generation Learning in camera sensor networks [J]. Ad Hoc Networks, 2020, 97: No.102019. |
[71] | ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. Deep reinforcement learning: a brief survey [J]. IEEE Signal Processing Magazine, 2017, 34(6): 26-38. |
[72] | KARALAKOU A, TROULLINOS D, CHALKIADAKIS G, et al. Deep reinforcement learning reward function design for autonomous driving in lane-free traffic [J]. Systems, 2023, 11(3): No.134. |
[73] | UDUGAMA B. Review of deep reinforcement learning for autonomous driving [EB/OL]. [2024-02-03]. . |
[74] | THANANJEYAN B, GARG A, KRISHNAN S, et al. Multilateral surgical pattern cutting in 2D orthotropic gauze with deep reinforcement learning policies for tensioning [C]// Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2017: 2371-2378. |
[75] | ZHANG J, HAO B, CHEN B, et al. Hierarchical reinforcement learning for course recommendation in MOOCs [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 435-442. |
[76] | CHUNG H M, MAHARJAN S, ZHANG Y, et al. Distributed deep reinforcement learning for intelligent load scheduling in residential smart grids [J]. IEEE Transactions on Industrial Informatics, 2021, 17(4): 2752-2763. |
[77] | BINAS J, LUGINBUEHL L, BENGIO Y. Reinforcement learning for sustainable agriculture [EB/OL]. [2024-02-03]. . |
[78] | HUSSAIN F, HASSAN S A, HUSSAIN R, et al. Machine learning for resource management in cellular and IoT networks: potentials, current solutions, and open challenges [J]. IEEE Communications Surveys and Tutorials, 2020, 22(2): 1251-1275. |
[79] | CHU K F, GUO W. Federated reinforcement learning for consumers privacy protection in mobility-as-a-service [C]// Proceedings of the IEEE 26th International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2023: 4840-4846. |
[80] | ZHENG J, LI K, MHAISEN N, et al. Exploring deep-reinforcement-learning-assisted federated learning for online resource allocation in privacy-preserving EdgeIoT [J]. IEEE Internet of Things Journal, 2022, 9(21): 21099-21110. |
[81] | SINHA S, RAKHRA M. AI driven e-commerce product recommendation [C]// Proceedings of the 6th International Conference on Contemporary Computing and Informatics. Piscataway: IEEE, 2023: 13-16. |
[82] | LONGO F, NICOLETTI L, PADOVANO A. Ubiquitous knowledge empowers the Smart Factory: the impacts of a Service-oriented Digital Twin on enterprises’ performance [J]. Annual Reviews in Control, 2019, 47: 221-236. |
[83] | WANG Q, MAO Z, WANG B, et al. Knowledge graph embedding: a survey of approaches and applications [J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724-2743. |
[84] | CHEN Y, KUANG J, CHENG D, et al. AgriKG: an agricultural knowledge graph and its applications [C]// Proceedings of the 2019 International Conference on Database Systems for Advanced Applications, LNCS 11448. Cham: Springer, 2019: 533-537. |
[85] | KONG W, LIN W, BABILONI F, et al. Investigating driver fatigue versus alertness using the granger causality network [J]. Sensors, 2015, 15(8): 19181-19198. |
[86] | LIANG X, LIU Y, CHEN T, et al. Federated transfer reinforcement learning for autonomous driving [M]// RAZAVI-FAR R, WANG B, TAYLOR M E, et al. Federated and transfer learning, ALO 27. Cham: Springer, 2023: 357-371. |
[87] | ASGHARIAN P, PANCHEA A M, FERLAND F. A review on the use of mobile service robots in elderly care [J]. Robotics, 2022, 11(6): No.127. |
[88] | BANERJEE A, DALAL R, MITTAL S, et al. Generating digital twin models using knowledge graphs for industrial production lines [C]// Proceedings of the 2017 International ACM Web Science Conference. New York: ACM, 2017: 425-430. |
[89] | ARIK S Ö, CHRZANOWSKI M, COATES A, et al. Deep Voice: real-time neural text-to-speech [C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 195-204. |
[90] | ZHANG T, McCARTHY Z, JOW O, et al. Deep imitation learning for complex manipulation tasks from virtual reality teleoperation [C]// Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2018: 5628-5635. |
[91] | ANGELOV K, BRINGERT B, RANTA A. Speech-enabled hybrid multilingual translation for mobile devices [C]// Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2014: 41-44. |
[92] | CIRILLO F, GÓMEZ D, DIEZ L, et al. Smart city IoT services creation through large-scale collaboration [J]. IEEE Internet of Things Journal, 2020, 7(6): 5267-5275. |
[93] | KIMOTHI S, THAPLIYAL A, SINGH R, et al. Comprehensive database creation for potential fish zones using IoT and ML with assimilation of geospatial techniques [J]. Sustainability, 2023, 15(2): No.1062. |
[94] | KIRIMTAT A, KREJCAR O, KERTESZ A, et al. Future trends and current state of smart city concepts: a survey [J]. IEEE Access, 2020, 8: 86448-86467. |
[95] | GAI K, GUO J, ZHU L, et al. Blockchain meets cloud computing: a survey [J]. IEEE Communications Surveys and Tutorials, 2020, 22(3): 2009-2030. |
[96] | SICARI S, RIZZARDI A, GRIECO L A, et al. Security, privacy and trust in Internet of Things: the road ahead [J]. Computer Networks, 2015, 76: 146-164. |
[97] | CHEN I R, BAO F, GUO J. Trust-based service management for social Internet of Things systems [J]. IEEE Transactions on Dependable and Secure Computing, 2016, 13(6): 684-696. |
[98] | GULERIA P, SRINIVASU P N, AHMED S, et al. XAI framework for cardiovascular disease prediction using classification techniques [J]. Electronics, 2022, 11(24): No.4086. |
[99] | MANSOOR J S, SUBRAMANIAM K. Healthcare monitoring-based IoT framework for heart disease detection and classification [J]. Journal of Angiotherapy, 2024, 8(3): 1-11. |
[100] | YU H Q, ALABA A, EZIEFUNA E. Evaluation of integrated XAI frameworks for explaining disease prediction models in healthcare [C]// Proceedings of the 2023 International Workshop on Internet of Things of Big Data for Healthcare. Cham: Springer, 2024: 14-28. |
[101] | CHADDAD A, PENG J, XU J, et al. Survey of explainable AI techniques in healthcare [J]. Sensors, 2023, 23(2): No.634. |
[102] | SHEU R K, PARDESHI M S. A survey on medical eXplainable AI (XAI): recent progress, explainability approach, human interaction and scoring system [J]. Sensors, 2022, 22(20): No.8068. |
[103] | JIAO J R, ZHOU F, GEBRAEEL N Z, et al. Towards augmenting cyber-physical-human collaborative cognition for human automation interaction in complex manufacturing and operational environments [J]. International Journal of Production Research, 2020, 58(16): 5089-5111. |
[104] | ALANI M M. An explainable efficient flow-based Industrial IoT intrusion detection system [J]. Computers and Electrical Engineering, 2023, 108: No.108732. |
[105] | LIU Y, LI S. Hybrid cyber threats detection using explainable AI in Industrial IoT [C]// Proceedings of the 2023 International Conference on Human-Centered Cognitive Systems. Piscataway: IEEE, 2023: 1-6. |
[106] | KHAN I A, MOUSTAFA N, PI D, et al. A new explainable deep learning framework for cyber threat discovery in industrial IoT networks [J]. IEEE Internet of Things Journal, 2022, 9(13): 11604-11613. |
[107] | LU Y, PENG T, XU X. Energy-efficient cyber-physical production network: architecture and technologies [J]. Computers and Industrial Engineering, 2019, 129: 56-66. |
[108] | LIU X L, WANG W M, GUO H, et al. Industrial blockchain based framework for product lifecycle management in industry 4.0 [J]. Robotics and Computer-Integrated Manufacturing, 2020, 63: No.101897. |
[109] | CHEN G, WANG P, FENG B, et al. The framework design of smart factory in discrete manufacturing industry based on cyber-physical system [J]. International Journal of Computer Integrated Manufacturing, 2020, 33(1): 79-101. |
[110] | JAGATHEESAPERUMAL S K, RAHOUTI M, AHMAD K, et al. The duo of artificial intelligence and big data for industry 4.0: review of applications, techniques, challenges and future research directions [J]. IEEE Internet of Things Journal, 2022, 9(5): 12861-12885. |
[111] | DAS D, NISHIMURA Y, VIVEK R P, et al. Explainable activity recognition for smart home systems [J]. ACM Transactions on Interactive Intelligent Systems, 2023, 13(2): No.7. |
[112] | ARROTTA L, CIVITARESE G, BETTINI C. DeXAR: deep explainable sensor-based activity recognition in smart-home environments [J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2022, 6(1): No.1. |
[113] | MARTONE A, CENA F, GENA C, et al. Securing the smart home environment: an experiment on the impact of explainable warnings [C]// Proceedings of the 2024 International Conference on Advanced Visual Interfaces. New York: ACM, 2024: No.72. |
[114] | PRABHU H, VALDI J, ARJUNAN P. Explainable AI for energy prediction and anomaly detection in smart energy buildings [C]// Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation. New York: ACM, 2023: 472-475. |
[115] | ALAZAB M, BROADHURST R. Spam and criminal activity [J]. Trends and Issues in Crime and Criminal Justice, 2016(526): 1-20. |
[116] | SHORFUZZAMAN M, HOSSAIN M S, ALHAMID M F. Towards the sustainable development of smart cities through mass video surveillance: a response to the COVID-19 pandemic [J]. Sustainable Cities and Society, 2021, 64: No.102582. |
[117] | JAVED A R, JALIL Z, ZEHRA W, et al. A comprehensive survey on digital video forensics: taxonomy, challenges and future directions [J]. Engineering Applications of Artificial Intelligence, 2021, 106: No.104456. |
[118] | HAMZA A, JAVED A R R, IQBAL F, et al. Deepfake audio detection via MFCC features using machine learning [J]. IEEE Access, 2022, 10: 134018-134028. |
[119] | GUPTA S. Mapping the smart city: participatory approaches to XAI [C]// Proceedings of the 2023 ACM Designing Interactive Systems Conference. New York: ACM, 2023: 1-6. |
[120] | MORI K, FUKUI H, MURASE T, et al. Visual explanation by attention branch network for end-to-end learning-based self-driving [C]// Proceedings of the 2019 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2019: 1577-1582. |
[121] | HASPIEL J, DU N, MEYERSON J, et al. Explanations and expectations: trust building in automated vehicles [C]// Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. New York: ACM, 2018: 119-120. |
[122] | SHAO H, WANG L, CHEN R, et al. Safety-enhanced autonomous driving using interpretable sensor fusion Transformer [C]// Proceedings of the 6th Conference on Robot Learning. New York: JMLR.org, 2023: 726-737. |
[123] | CHEN J, LI S E, TOMIZUKA M. Interpretable end-to-end urban autonomous driving with latent deep reinforcement learning [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 5068-5078. |
[124] | TENG S, CHEN L, AI Y, et al. Hierarchical interpretable imitation learning for end-to-end autonomous driving [J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 673-683. |
[125] | WANG H, CHEN Y, YU H, et al. Social cascade FNN: an interpretable learning-based decision-making framework for autonomous driving in lane changing scenarios [C]// Proceedings of the IEEE 26th International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2023: 3519-3526. |
[126] | RAWAT D. Secure and trustworthy machine learning/artificial intelligence for multi-domain operations [C]// Proceedings of the SPIE 11746, Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III. Bellingham: SPIE, 2021: No.1174609. |
[127] | 窦慧,张凌茗,韩峰,等.卷积神经网络的可解释性研究综述[J].软件学报,2024, 35(1): 159-184. |
DOU H, ZHANG L M, HAN F, et al. Survey on convolutional neural network interpretability [J]. Journal of Software, 2024, 35(1): 159-184. | |
[128] | GÜNDÜZ D, QIN Z, AGUERRI I E, et al. Guest editorial special issue on beyond transmitting bits: context, semantics, and task-oriented communications [J]. IEEE Journal on Selected Areas in Communications, 2023, 41(1): 1-4. |
[129] | XU W, YANG Z, NG D W K, et al. Edge learning for B5G networks with distributed signal processing: semantic communication, edge computing, and wireless sensing [J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(1): 9-39. |
[130] | BAU D, ZHOU B, KHOSLA A, et al. Network dissection: quantifying interpretability of deep visual representations [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3319-3327. |
[131] | NGUYEN D C, DING M, PATHIRANA P N, et al. 6G Internet of Things: a comprehensive survey [J]. IEEE Internet of Things Journal, 2022, 9(1): 359-383. |
[132] | JAWAD A T, MAALOUL R, CHAARI L. A comprehensive survey on 6G and beyond: enabling technologies, opportunities of machine learning and challenges [J]. Computer Networks, 2023, 237: No.110085. |
[133] | WANG S, QURESHI M A, MIRALLES-PECHUÁN L, et al. Applications of explainable AI for 6G: technical aspects, use cases, and research challenges [EB/OL]. [2024-03-01]. . |
[134] | SIDDIQUI M U A, QAMAR F, KAZMI S H A, et al. A study on multi-antenna and pertinent technologies with AI/ML approaches for B5G/6G networks [J]. Electronics, 2022, 12(1): No.189. |
[135] | ZHANG L, QAMAR F, LIAQAT M, et al. Toward efficient 6G IoT networks: a perspective on resource optimization strategies, challenges, and future directions [J]. IEEE Access, 2024, 12: 76606-76633. |
[136] | BRADBURY M, JHUMKA A, WATSON T, et al. Threat-modeling-guided trust-based task offloading for resource-constrained Internet of Things [J]. ACM Transactions on Sensor Networks, 2022, 18(2): No.29. |
[137] | DE SILVA L P, NASCIMENTO B S, DIAS R A M P, et al. A comprehensive approach for applying threat modeling to Internet of Things systems [C]// Proceedings of the IEEE 8th World Forum on Internet of Things. Piscataway: IEEE, 2022: 1-6. |
[138] | GAO J, WANG X, WANG Y, et al. Explainable recommendation through attentive multi-view learning [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 3622-3629. |
[139] | DAS A, RAD P. Opportunities and challenges in eXplainable Artificial Intelligence (XAI): a survey [EB/OL]. [2024-03-05]. . |
[140] | KHAMPARIA A, GUPTA D, KHANNA A, et al. Biomedical data analysis and processing using explainable (XAI) and Responsive Artificial Intelligence (RAI), ISRL 222 [M]. Singapore: Springer, 2022. |
[141] | AL-HILO A, SAMIR M, ASSI C, et al. UAV-assisted content delivery in intelligent transportation systems-joint trajectory planning and cache management [J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 5155-5167. |
[142] | GUPTA B B, GAURAV A, MARÍN E C, et al. Novel graph-based machine learning technique to secure smart vehicles in intelligent transportation systems [J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(8): 8483-8491. |
[143] | SAMIR M, ASSI C, SHARAFEDDINE S, et al. Age of information aware trajectory planning of UAVs in intelligent transportation systems: a deep learning approach [J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 12382-12395. |
[1] | 张立孝, 马垚, 杨玉丽, 于丹, 陈永乐. 基于命名实体识别的大规模物联网二进制组件识别[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2288-2295. |
[2] | 索晋贤, 张丽萍, 闫盛, 王东奇, 张雅雯. 可解释的深度知识追踪方法综述[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2043-2055. |
[3] | 王震洲, 郭方方, 宿景芳, 苏鹤, 王建超. 面向智能巡检的视觉模型鲁棒性优化方法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2361-2368. |
[4] | 齐巧玲, 王啸啸, 张茜茜, 汪鹏, 董永峰. 基于元学习的标签噪声自适应学习算法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2113-2122. |
[5] | 李岚皓, 严皓钧, 周号益, 孙庆赟, 李建欣. 基于神经网络的多尺度信息融合时间序列长期预测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1776-1783. |
[6] | 花天辰, 马晓宁, 智慧. 基于浅层人工神经网络的可移植执行恶意软件静态检测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1911-1921. |
[7] | 牛四杰, 刘昱良. 基于知识蒸馏双分支结构的视网膜病变辅助诊断方法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1410-1414. |
[8] | 王文鹏, 秦寅畅, 师文轩. 工业缺陷检测无监督深度学习方法综述[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1658-1670. |
[9] | 李雪莹, 杨琨, 涂国庆, 刘树波. 基于局部增强的时序数据对抗样本生成方法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1573-1581. |
[10] | 陈凯, 叶海良, 曹飞龙. 基于局部-全局交互与结构Transformer的点云分类算法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1671-1676. |
[11] | 王丹, 张文豪, 彭丽娟. 基于深度学习的智能反射面辅助通信系统信道估计[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1613-1618. |
[12] | 潘理虎, 彭守信, 张睿, 薛之洋, 毛旭珍. 面向运动前景区域的视频异常检测[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1300-1309. |
[13] | 王一丁, 王泽浩, 李耀利, 蔡少青, 袁媛. 多尺度2D-Adaboost的中药材粉末显微图像识别算法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1325-1332. |
[14] | 周阳, 李辉. 基于语义和细节特征双促进的遥感影像建筑物提取网络[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1310-1316. |
[15] | 陈瑞龙, 胡涛, 卜佑军, 伊鹏, 胡先君, 乔伟. 面向加密恶意流量检测模型的堆叠集成对抗防御方法[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 864-871. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||