1 |
孙兵,刘艳,王田,等.移动边缘网络中联邦学习效率优化综述[J].计算机研究与发展,2022,59(7):1439-1469.
|
|
SUN B, LIU Y, WANG T, et al. Survey on optimization of federal learning efficiency in mobile edge networks[J]. Journal of Computer Research and Development, 2022, 59(7): 1439-1469.
|
2 |
VOIGT P, VON DEM BUSSCHE A. The EU General Data Protection Regulation (GDPR): a practical guide [M]. Cham: Springer, 2017: 10-55.
|
3 |
刘桂锋,阮冰颖,刘琼.加强数据安全防护提升数据治理能力——《中华人民共和国数据安全法(草案)》解读[J].农业图书情报学报, 2021, 33(4): 4-13.
|
|
LIU G F, RUAN B Y, LIU Q. Enhance data security governance capability: interpretation of data security law of the People's Republic of China (Draft)[J]. Journal of Library and Information Sciences in Agriculture, 2021, 33(4): 4-13..
|
4 |
YANG Q, LIU Y, CHEN T, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): No.12.
|
5 |
陈庆礼,郭渊博,方晨.面向数据异构的聚类联邦学习算法[J/OL].计算机应用,2024 [2024-07-02]. .
|
|
CHEN Q L, GUO Y B, FANG C. Clustering federated learning algorithm for heterogeneous data [J/OL]. Journal of Computer Applications, 2024 [2024-07-02]. .
|
6 |
XU C, QU Y, XIONG Y, et al. Asynchronous federated learning on heterogeneous devices: a survey[J]. Computer Science Review, 2023, 50: No.100595.
|
7 |
WANG K, MATHEWS R, KIDDON C, et al. Federated evaluation of on-device personalization[EB/OL]. [2024-03-22]. .
|
8 |
MALAN E, PELUSO V, CALIMERA A, et al. Communication-efficient federated learning with gradual layer freezing[J]. IEEE Embedded Systems Letters, 2023, 15(1): 25-28.
|
9 |
YE M, FANG X, DU B, et al. Heterogeneous federated learning: state-of-the-art and research challenges[J]. ACM Computing Surveys, 2024, 56(3): No.79.
|
10 |
黄伟峰.基于联邦学习的移动边缘协同计算技术研究[D].西安:西安电子科技大学,2022.
|
|
HUANG W F. Mobile edge collaborative computing technology based on federated learning[D]. Xi'an: Xidian University, 2022.
|
11 |
WANG B, CHEN Y, JIANG H, et al. PPeFL: privacy-preserving edge federated learning with local differential privacy[J]. IEEE Internet of Things Journal, 2023, 10(17): 15488-15500.
|
12 |
NEW W K, WONG K K, XU H, et al. Fluid antenna system: new insights on outage probability and diversity gain[J]. IEEE Transactions on Wireless Communications, 2024, 23(1): 128-140.
|
13 |
雷帅.面向边缘计算的联邦学习高效聚合策略研究[D].重庆:重庆邮电大学,2022.
|
|
LEI S. Efficient aggregation strategies for federated learning in edge computing[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2022.
|
14 |
HUANG X, LI P, LI X. Stochastic controlled averaging for federated learning with communication compression[EB/OL]. [2024-11-09]. .
|
15 |
KARIMIREDDY S P, KALE S, MOHRI M, et al. SCAFFOLD: stochastic controlled averaging for federated learning[C]// Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 5132-5143.
|
16 |
MU X, SHEN Y, CHENG K, et al. FedProc: prototypical contrastive federated learning on non-IID data[J]. Future Generation Computer Systems, 2023, 143: 93-104.
|
17 |
McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th Artificial Intelligence and Statistics. New York: ACM, 2017: 1273-1282.
|
18 |
王蓓蓓,朱竞,王嘉乐,等.电表数据隐私保护下的联邦学习行业电力负荷预测框架[J].电力系统自动化,2023,47(13):86-93.
|
|
WANG B B, ZHU J, WANG J L, et al. Federated-learning based industry load forecasting framework under privacy protection of meter data[J]. Automation of Electric Power Systems, 2023, 47(13): 86-93.
|
19 |
VARNO F, SAGHAYI M, RAFIEE SEVYERI L, et al. AdaBest: minimizing client drift in federated learning via adaptive bias estimation[C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13683. Cham: Springer, 2022: 710-726.
|
20 |
BADAR M, NEJDL W, FISICHELLA M. FAC-Fed: federated adaptation for fairness and concept drift aware stream classification[J]. Machine Learning, 2023, 112(8): 2761-2786.
|
21 |
RAN H, WEN S, WANG S, et al. Memristor-based edge computing of ShuffleNetV2 for image classification[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40(8): 1701-1710.
|
22 |
GAO L, FU H, LI L, et al. FedDC: federated learning with non-iid data via local drift decoupling and correction[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 10102-10111.
|
23 |
韩洁,陈俊芬,李艳,等.基于自注意力的自监督深度聚类算法[J].计算机科学,2022,49(3):134-143.
|
|
HAN J, CHEN J F, LI Y, et al. Self-supervised deep clustering algorithm based on self-attention[J]. Computer Science, 2022, 49(3): 134-143.
|
24 |
LI H, LUO L, WANG H. Federated learning on non-independent and identically distributed data[C]// Proceedings of the 3rd International Conference on Machine Learning and Computer Application. Bellingham, WA: SPIE, 2023, 12636: 126360O.
|
25 |
KAR B, YAHYA W, LIN Y D, et al. Offloading using traditional optimization and machine learning in federated cloud-edge-fog systems: a survey[J]. IEEE Communications Surveys and Tutorials, 2023, 25(2): 1199-1226.
|
26 |
LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[C]// Proceedings of the 2020 Machine Learning and Systems 2. [S.l.]: MLSys, 2020: 429-450.
|
27 |
何常乐,袁培燕.边缘联邦学习的客户端选择机制[J].计算机应用,2023,43(S1):147-153.
|
|
HE C L, YUAN P Y. Client selection mechanism for federated learning in edge computing[J]. Journal of Computer Applications, 2023, 43(S1): 147-153.
|