| [1] |
BERGMANN P, FAUSER M, SATTLEGGER D, et al. MVTec AD — a comprehensive real-world dataset for unsupervised anomaly detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9584-9592.
|
| [2] |
PERERA P, NALLAPATI R, XIANG B. OCGAN: one-class novelty detection using GANs with constrained latent representations[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2893-2901.
|
| [3] |
SABOKROU M, KHALOOEI M, FATHY M, et al. Adversarially learned one-class classifier for novelty detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3379-3388.
|
| [4] |
SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks[J]. Medical Image Analysis, 2019, 54: 30-44.
|
| [5] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
| [6] |
ROTH K, PEMULA L, ZEPEDA J, et al. Towards total recall in industrial anomaly detection[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14298-14308.
|
| [7] |
DEFARD T, SETKOV A, LOESCH A, et al. PaDiM: a patch distribution modeling framework for anomaly detection and localization[C]// Proceedings of the 2021 International Conference on Pattern Recognition, LNCS 12664. Cham: Springer, 2021: 475-489.
|
| [8] |
刘永江,陈斌.基于多尺度记忆库的像素级无监督工业异常检测[J].计算机应用,2024,44(11):3587-3594.
|
|
LIU Y J, CHEN B. Pixel-level unsupervised industrial anomaly detection based on multi-scale memory bank[J]. Journal of Computer Applications, 2024, 44(11): 3587-3594.
|
| [9] |
HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. [2024-08-02]..
|
| [10] |
BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: student-teacher anomaly detection with discriminative latent embeddings[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4182-4191.
|
| [11] |
SALEHI M, SADJADI N, BASELIZADEH S, et al. Multiresolution knowledge distillation for anomaly detection[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14897-14907.
|
| [12] |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255.
|
| [13] |
DENG H, LI X. Anomaly detection via reverse distillation from one-class embedding[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9727-9736.
|
| [14] |
TIEN T D, NGUYEN A T, TRAN N H, et al. Revisiting reverse distillation for anomaly detection[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 24511-24520.
|
| [15] |
BERGMANN P, LÖWE S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[C]// Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications — Volume 5: VISAPP. Setúbal: SciTePress, 2019: 372-380.
|
| [16] |
VASILEV A, GOLKOV V, MEISSNER M, et al. q-Space novelty detection with variational autoencoders[C]// Proceedings of the 2020 Workshop on Computational Diffusion MRI: MICCAI Workshop, MATHVISUAL. Cham: Springer, 2020: 113-124.
|
| [17] |
WANG G, HAN S, DING E, et al. Student-teacher feature pyramid matching for anomaly detection[C]// Proceedings of the 2021 British Machine Vision Conference. Durham: BMVA Press, 2021: No.1273.
|
| [18] |
BATZNER K, HECKLER L, KÖNIG R. EfficientAD: accurate visual anomaly detection at millisecond-level latencies[C]// Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 127-137.
|
| [19] |
ZHANG X, LI S, LI X, et al. DeSTSeg: segmentation guided denoising student-teacher for anomaly detection[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 3914-3923.
|
| [20] |
LI C L, SOHN K, YOON J, et al. CutPaste: self-supervised learning for anomaly detection and localization[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9659-9669.
|
| [21] |
ZAVRTANIK V, KRISTAN M, SKOČAJ D. DRÆM — a discriminatively trained reconstruction embedding for surface anomaly detection[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8310-8319.
|
| [22] |
ZHANG X, XU M, ZHOU X. RealNet: a feature selection network with realistic synthetic anomaly for anomaly detection[C]// Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16699-16708.
|
| [23] |
ZAVRTANIK V, KRISTAN M, SKOČAJ D. DSR — a dual subspace re-projection network for surface anomaly detection[C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13691. Cham: Springer, 2022: 539-554.
|
| [24] |
YANG M, WU P, FENG H. MemSeg: a semi-supervised method for image surface defect detection using differences and commonalities[J]. Engineering Applications of Artificial Intelligence, 2023, 119: No.105835.
|