虚拟专题文章

    先进计算

    默认 最新文章 浏览次数
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 基于数据驱动的云边智能协同综述
    田鹏新, 司冠南, 安兆亮, 李建辛, 周风余
    《计算机应用》唯一官方网站    2023, 43 (10): 3162-3169.   DOI: 10.11772/j.issn.1001-9081.2022091418
    摘要727)   HTML46)    PDF (1772KB)(530)    收藏

    随着物联网(IoT)的快速发展,大量在传感器等边缘场景产生的数据需要传输至云节点处理,这带来了极大的传输成本和处理时延,而云边协同为这些问题提供了有效的解决方案。首先,在全面调查和分析云边协同发展过程的基础上,结合当前云边智能协同中的研究思路与进展,重点分析和讨论了云边架构中的数据采集与分析、计算迁移技术以及基于模型的智能优化技术;其次,分别从边缘端和云端深入分析了各种技术在云边智能协同中的作用及应用,并探讨了云边智能协同技术在现实中的应用场景;最后,指出了云边智能协同目前存在的挑战及未来的发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    2. 面向卷积神经网络的高并行度FPGA加速器设计
    王晓峰, 蒋彭龙, 周辉, 赵雄波
    计算机应用    2021, 41 (3): 812-819.   DOI: 10.11772/j.issn.1001-9081.2020060996
    摘要706)      PDF (1115KB)(921)    收藏
    大多数基于卷积神经网络(CNN)的算法都是计算密集型和存储密集型的,很难应用于具有低功耗要求的航天、移动机器人、智能手机等嵌入式领域。针对这一问题,提出一种面向CNN的高并行度现场可编程逻辑门阵列(FPGA)加速器。首先,比较研究CNN算法中可用于FPGA加速的4类并行度;然后,提出多通道卷积旋转寄存流水(MCRP)结构,简洁有效地利用了CNN算法的卷积核内并行;最后,采用输入输出通道并行+卷积核内并行的方案提出一种基于MCRP结构的高并行度CNN加速器架构,并将其部署到XILINX的XCZU9EG芯片上,在充分利用片上数字信号处理器(DPS)资源的情况下,峰值算力达到2 304 GOPS。以SSD-300算法为测试对象,该CNN加速器的实际算力为1 830.33 GOPS,硬件利用率达79.44%。实验结果表明,MCRP结构可有效提高CNN加速器的算力,基于MCRP结构的CNN加速器可基本满足嵌入式领域大部分应用的算力需求。
    参考文献 | 相关文章 | 多维度评价
    3. 基于协同进化的约束多目标优化算法
    张祥飞, 鲁宇明, 张平生
    计算机应用    2021, 41 (7): 2012-2018.   DOI: 10.11772/j.issn.1001-9081.2020081344
    摘要681)      PDF (975KB)(470)    收藏
    针对约束多目标优化算法存在难以有效地兼顾收敛性和多样性的问题,提出一种基于协同进化的约束多目标优化算法。第一阶段,通过基于稳态演化的可行解搜索方式得到一个具有一定数量可行解的种群;第二阶段,将这个种群拆分为两个子种群,并通过双子种群协同进化的方式实现对收敛性和多样性的兼顾;最后采用标准约束多目标优化问题CF1~CF7、DOC1~DOC7和实际工程问题进行仿真实验,以测试所提算法的求解性能。实验结果表明,与基于约束支配准则的非支配排序遗传算法(NSGA-Ⅱ-CDP)、两阶段算法(ToP)、推拉搜索算法(PPS)和约束多目标优化的双存档进化算法(C-TAEA)相比,所提算法在反向世代距离(IGD)和超体积(HV)两个指标上均取得了良好的结果,说明所提算法可以有效地兼顾收敛性和多样性。
    参考文献 | 相关文章 | 多维度评价
    4. 基于余弦相似度的改进蝴蝶优化算法
    陈俊, 何庆
    计算机应用    2021, 41 (9): 2668-2677.   DOI: 10.11772/j.issn.1001-9081.2020111776
    摘要644)      PDF (1469KB)(764)    收藏
    针对蝴蝶优化算法(BOA)容易陷入局部最优和收敛性差等问题,提出一种多策略改进的蝴蝶优化算法(MSBOA)。首先引入余弦相似度位置调整策略,通过旋转变化算子和伸缩变换算子进行位置更新,从而有效地保持BOA的种群多样性;其次引入动态切换概率,来平衡BOA局部阶段和全局阶段的转换;最后增加混合惯性权重策略,以提高BOA的收敛速度。使用16个基准测试函数、Wilcoxon检验以及部分CEC2014函数来验证MSBOA的有效性和鲁棒性。仿真实验结果表明,与BOA和其他改进策略BOA及其他群智能算法相比,MSBOA在收敛精度和收敛速度上有明显的提升。
    参考文献 | 相关文章 | 多维度评价
    5. 引入通信与探索的多智能体强化学习QMIX算法
    邓晖奕, 李勇振, 尹奇跃
    《计算机应用》唯一官方网站    2023, 43 (1): 202-208.   DOI: 10.11772/j.issn.1001-9081.2021111886
    摘要601)   HTML15)    PDF (1867KB)(283)    收藏
    非平稳性问题是多智能体环境中深度学习面临的主要挑战之一,它打破了大多数单智能体强化学习算法都遵循的马尔可夫假设,使每个智能体在学习过程中都有可能会陷入由其他智能体所创建的环境而导致无终止的循环。为解决上述问题,研究了中心式训练分布式执行(CTDE)架构在强化学习中的实现方法,并分别从智能体间通信和智能体探索这两个角度入手,采用通过方差控制的强化学习算法(VBC)并引入好奇心机制来改进QMIX算法。通过星际争霸Ⅱ学习环境(SC2LE)中的微操场景对所提算法加以验证。实验结果表明,与QMIX算法相比,所提算法的性能有所提升,并且能够得到收敛速度更快的训练模型。
    参考文献 | 相关文章 | 多维度评价
    6. 混沌精英哈里斯鹰优化算法
    汤安迪, 韩统, 徐登武, 谢磊
    计算机应用    2021, 41 (8): 2265-2272.   DOI: 10.11772/j.issn.1001-9081.2020101610
    摘要594)      PDF (1295KB)(455)    收藏
    针对哈里斯鹰优化(HHO)算法存在的收敛精度低、收敛速度慢、易于陷入局部最优的不足,提出了一种混沌精英哈里斯鹰优化(CEHHO)算法。首先,引入精英等级制度策略,以充分利用优势种群来增强种群多样性以及提升算法收敛速度和精度;其次,利用Tent混沌映射调整算法关键参数;然后,使用一种非线性能量因子调节策略来平衡算法的开发与探索;最后,使用高斯随机游走策略对最优个体施加扰动,并在算法停滞时,利用随机游走策略使算法有效跳出局部最优。通过对20个基准测试函数在不同维度下进行仿真实验,来评估算法的寻优能力。实验结果表明,改进算法的表现优于鲸鱼优化算法(WOA)、灰狼优化(GWO)算法、粒子群优化(PSO)算法和生物地理优化(BBO)算法,性能较原始HHO算法有明显提升,验证了改进算法的有效性。
    参考文献 | 相关文章 | 多维度评价
    7. 网络攻击下双层结构多智能体系统一致性
    王云燕, 胡爱花
    计算机应用    2021, 41 (5): 1399-1405.   DOI: 10.11772/j.issn.1001-9081.2020081159
    摘要583)      PDF (1150KB)(473)    收藏
    研究了遭受网络攻击的双层结构多智能体系统的一致性问题。针对包含领导层和跟随者层的双层网络结构的多智能体系统,考虑了如下情况:领导层相邻智能体之间为友好合作关系,跟随者层相邻智能体之间既包含友好合作也包含对抗竞争关系,同时领导层与跟随者层中部分对应智能体之间存在牵制关系。分析了受网络攻击的领导层多智能体系统、跟随者层多智能体系统和双层网络结构多智能体系统的节点之间的一致性关系。基于线性矩阵不等式(LMI)、李雅普诺夫稳定性理论和图论等相关知识给出了领导层多智能体系统节点间实现一致,跟随者层多智能体系统节点间实现二分一致,以及双层结构的多智能体系统之间实现点对点二分一致的充分性判据。最后,给出了具体的数值仿真例子,实现了遭受网络攻击的双层结构多智能体系统的一致性,验证了所给出的判据的有效性。
    参考文献 | 相关文章 | 多维度评价
    8. 无人机辅助移动边缘计算中的任务卸载算法
    李校林, 江雨桑
    《计算机应用》唯一官方网站    2023, 43 (6): 1893-1899.   DOI: 10.11772/j.issn.1001-9081.2022040548
    摘要575)   HTML11)    PDF (2229KB)(344)    收藏

    无人机(UAV)灵活机动、易于部署,可以辅助移动边缘计算(MEC)帮助无线系统提高覆盖范围和通信质量,但UAV辅助MEC系统研究中存在计算延迟需求和资源管理等挑战。针对UAV为地面多个终端设备提供辅助计算服务的时延问题,提出一种基于双延迟深度确定性策略梯度(TD3)的时延最小化任务卸载算法(TD3-TOADM)。首先,将优化问题建模为在能量约束下的最小化最大计算时延的问题;其次,通过TD3-TOADM联合优化终端设备调度、UAV轨迹和任务卸载比来最小化最大计算时延。仿真实验分析结果表明,与分别基于演员-评论家(AC)、深度Q网络(DQN)以及深度确定性策略梯度(DDPG)的任务卸载算法相比,TD3-TOADM得到的计算时延减小了8.2%以上。可见TD3-TOADM能获得低时延的最优卸载策略,具有较好的收敛性和鲁棒性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    9. 基于准反向变异的实数笛卡尔遗传编程算法
    付安兵, 魏文红, 张宇辉, 郭文静
    计算机应用    2021, 41 (2): 479-485.   DOI: 10.11772/j.issn.1001-9081.2020060791
    摘要548)      PDF (1178KB)(489)    收藏
    针对传统笛卡尔遗传编程(CGP)算法变异操作多样性的缺乏以及其使用的进化策略本身的局限性,提出了一种基于准反向变异的实数笛卡尔遗传编程算法(AD-RVCGP)。首先,和传统CGP一样,AD-RVCGP在进化过程中采用1+ λ的进化策略,即由一个父代个体只通过变异操作产生 λ个子代个体;其次,该算法在进化过程中动态选择准反向变异算子、末端变异算子和单点变异算子,并且利用反向个体的信息进行变异操作;最后,算法在进化过程中根据进化阶段的状态来选择不同的父代个体用于生成下一代个体。在符号回归问题的测试上,相较于传统CGP,AD-RVCGP的收敛加快了约30%,运行时间少了约20%;另外该算法求得的最优解与真实最优解误差更小。实验结果表明,AD-RVCGP具有较高的收敛速度和问题求解精度。
    参考文献 | 相关文章 | 多维度评价
    10. 基于二维Winograd算法的深流水线5×5卷积方法
    黄程程, 董霄霄, 李钊
    计算机应用    2021, 41 (8): 2258-2264.   DOI: 10.11772/j.issn.1001-9081.2020101668
    摘要537)      PDF (1087KB)(422)    收藏
    针对二维Winograd卷积算法中存储器带宽需求过高、计算复杂度高、设计探索周期漫长、级联的卷积存在层间计算延迟等问题,提出一种基于二维Winograd算法的双缓冲区5×5卷积层设计方法。首先使用列缓冲结构完成数据布局,以重用相邻分块之间的重叠数据,降低存储器带宽需求;然后精确搜索并复用Winograd算法加法计算过程中重复的中间计算结果,来降低加法运算量,从而减小加速器系统的能耗开销和设计面积;最后根据Winograd算法计算过程来完成6级流水线结构的设计,并实现针对5×5卷积的高效率计算。实验结果表明,这种5×5卷积的计算方法在基本不影响卷积神经网络(CNN)预测准确率的前提下,与传统卷积相比降低了83%的乘法运算量,加速倍率为5.82;该方法与级联3×3二维Winograd卷积组成5×5卷积的方法相比降低了12%的乘法运算量,降低了约24.2%的存储器带宽需求,并减少了20%的运算时间。
    参考文献 | 相关文章 | 多维度评价
    11. 受春秋战国史实启发的帝国竞争改进算法
    王贵林, 李斌
    计算机应用    2021, 41 (2): 470-478.   DOI: 10.11772/j.issn.1001-9081.2020060974
    摘要536)      PDF (2395KB)(400)    收藏
    针对帝国竞争算法过早收敛导致的求解高维函数时易陷入维数灾难的问题,受我国春秋战国时期诸侯国争雄称霸史实启发,提出了一种改进的帝国竞争算法。首先,在初始化国家阶段引入“合纵连横”竞争机制,以增强信息交互,保留较优种群;其次,在帝国同化过程中借鉴由国家各层面逐步渗透同化的殖民统治策略,以提升算法的开发能力;最后,加入判断并跳出局部最优的机制,避免“早熟”影响寻优性能。仿真实验中,利用8个经典标准函数验证改进算法的寻优能力、收敛速度及高维函数适用性,并对比分析三种跳出局部最优的方案;此外进行CEC2017测试函数实验,选取近年来在算法改进研究领域具有代表性的5种先进算法和所提改进算法进行比较,结果显示改进算法的寻优精度较高并且稳定性较强;而经Kendall相关系数分析可知,改进算法与原始算法在寻优性能上具有显著差异并且同化改进措施在性能提高中的贡献度最大。
    参考文献 | 相关文章 | 多维度评价
    12. 基于新一代神威超算的量子计算模拟器加速和优化
    史新民, 刘勇, 陈垚键, 宋佳伟, 刘鑫
    《计算机应用》唯一官方网站    2023, 43 (8): 2486-2492.   DOI: 10.11772/j.issn.1001-9081.2022091456
    摘要526)   HTML61)    PDF (2000KB)(693)    收藏

    针对量子硬件规模逐步扩大、当下量子计算经典模拟速度不高的问题,提出了基于神威超算量子模拟器的两种优化方法。首先,通过改进张量转置策略和计算策略重新构建了张量收缩算子库SWTT,从而提高了部分张量收缩的计算内核效率并减少了冗余访存;其次,通过提高数据局部性的收缩路径调整方法实现了路径计算复杂度和计算效率之间的均衡。测试结果表明,该算子库改进方法可将“悬铃木”量子霸权电路模拟效率提升5.4%,单步张量收缩效率最高提升49.7倍;该路径调整方法可在路径计算复杂度膨胀2倍条件下提升约4倍的浮点效率。两种优化方法使神威超算整机模拟谷歌53量子比特20层量子芯片随机电路百万振幅采样的单精度和混合精度浮点运算效率分别从3.98%和1.69%提升至18.48%和7.42%,理论估计模拟时间从单精度的470 s降至226 s,混合精度的304 s降至134 s,证明两种方法大幅提高了量子计算模拟速度。

    图表 | 参考文献 | 相关文章 | 多维度评价
    13. 基于顶点冲突学习的最大公共子图算法
    王宇, 刘燕丽, 陈劭武
    计算机应用    2021, 41 (6): 1756-1760.   DOI: 10.11772/j.issn.1001-9081.2020091381
    摘要516)      PDF (962KB)(620)    收藏
    针对最大公共子图(MCS)的传统分支策略依赖于图的静态属性,缺少学习历史搜索信息的问题,提出了基于顶点冲突学习的分支策略。首先,把上界的减少值作为分支点完成匹配动作的奖励;其次,由于当最优解被更新时,得到的最优解是分支点不断推理产生的结果,因此给予在完整的搜索路径上的分支点适当的奖励,从而强化这些顶点对搜索的积极作用;最后,设计了匹配动作的价值函数,并选择具有最大累计奖励的顶点作为新的分支点。在McSplit算法基础上,提出了糅合新分支策略的McSplitRLR算法。实验结果表明,除去均可以被所有对比算法在10 s之内解决的简单算例,在相同机器和求解限制时间条件下,相较当前先进的算法McSplit、McSplitSBS,McSplitRLR分别多解决了109、33个困难算例,求解率分别提高了5.6%、1.6%。
    参考文献 | 相关文章 | 多维度评价
    14. 基于改进深度强化学习的边缘计算服务卸载算法
    曹腾飞, 刘延亮, 王晓英
    《计算机应用》唯一官方网站    2023, 43 (5): 1543-1550.   DOI: 10.11772/j.issn.1001-9081.2022050724
    摘要514)   HTML17)    PDF (2400KB)(209)    收藏

    在边缘计算(EC)网络中,针对边缘节点计算资源和存储空间有限的问题,提出一种基于改进深度强化学习(DRL)的边缘计算服务卸载(ECSO)算法,以降低节点处理时延和提高服务性能。具体来说,将边缘节点服务卸载问题转化为资源受限的马尔可夫决策过程(MDP),利用DRL算法解决边缘节点的请求状态转移概率难以精确预测的问题;考虑到边缘节点执行缓存服务的状态动作空间过大,定义新的动作行为替代原有动作,并依据提出的动作筛选算法得到最优动作集合,以改进计算动作行为奖励值的过程,进而大幅度降低动作空间大小,提高算法训练的效率以及收益。仿真实验结果表明,对比原深度Q网络(DQN)算法、邻近策略优化(PPO)算法以及传统的最流行(MP)算法,ECSO算法的总奖励值分别提升了7.0%、12.7%和65.6%,边缘节点服务卸载时延分别降低了13.0%、18.8%和66.4%,验证了算法的有效性,说明ECSO能有效提升边缘计算服务的卸载性能。

    图表 | 参考文献 | 相关文章 | 多维度评价
    15. 信息筛选多任务优化自组织迁移算法
    程美英, 钱乾, 倪志伟, 朱旭辉
    计算机应用    2021, 41 (6): 1748-1755.   DOI: 10.11772/j.issn.1001-9081.2020091390
    摘要494)      PDF (1172KB)(369)    收藏
    针对现有自组织迁移算法(SOMA)只能求解单个优化问题及其“隐并行性”未能被充分挖掘的缺陷,提出信息筛选多任务优化自组织迁移算法(SOMAMIF)实现同一时刻处理多个优化问题。首先,构造多任务统一搜索空间,并根据任务个数设置相应的子种群;然后,对各子种群当前最优适应值进行判断,当任务连续若干代停滞进化时则产生信息交互需求;接着,按概率从剩余子种群中筛选对自己有用的信息并过滤无用信息,从而在保证信息正向迁移同时实现种群结构的重新调整;最后对算法的时间复杂度和空间复杂度进行分析。实验结果表明,SOMAMIF在同时求解多个高维函数优化问题时均快速收敛至全局最优解0,而SOMAMIF与分形技术相结合同时提取不同户籍高校学生返乡关键制约因素时,其在两个数据集上得到的平均分类准确率与原始数据集的平均分类准确率相比分别提高了0.348 66个百分点和0.598 57个百分点。
    参考文献 | 相关文章 | 多维度评价
    16. 结合遗传算法和滚动调度的多机器人任务分配算法
    邓辅秦, 黄焕钊, 谭朝恩, 付兰慧, 张建民, 林天麟
    《计算机应用》唯一官方网站    2023, 43 (12): 3833-3839.   DOI: 10.11772/j.issn.1001-9081.2022121916
    摘要492)   HTML12)    PDF (2617KB)(277)    收藏

    研究多机器人任务分配(MRTA)的目的是提高智能工厂中机器人完成任务的效率。针对现有算法在处理大规模、多约束的MRTA时存在不足的问题,提出一种结合遗传算法和滚动调度的MRTA算法(ACGARS)。首先,在遗传算法中采用基于有向无环图(DAG)的编码方式高效地处理任务之间的优先级约束;其次,在遗传算法的初始种群中加入先验知识以提高算法的搜索效率;最后,设计基于任务组的滚动调度策略用于减小求解问题的规模,从而实现对大规模问题的高效求解。在大规模问题实例上的实验结果表明,相较于构造性启发式算法(CHA)、最小化干扰算法(MIA)和基于惩罚策略的遗传算法(GAPS)生成的方案,当任务组数为20时,所提算法生成的方案的平均订单完成时间分别缩短了30.02%、16.86%和75.65%,验证了所提算法能有效地缩短订单的平均等待时间,提升多机器人任务分配效率。

    图表 | 参考文献 | 相关文章 | 多维度评价
    17. 多策略融合的改进黏菌算法
    邱仲睿, 苗虹, 曾成碧
    《计算机应用》唯一官方网站    2023, 43 (3): 812-819.   DOI: 10.11772/j.issn.1001-9081.2022020243
    摘要489)   HTML10)    PDF (880KB)(230)    收藏

    针对标准黏菌算法(SMA)存在的容易陷入局部最优解、收敛速度慢以及求解精度低等问题,提出一种多策略融合的改进黏菌算法(MSISMA)。首先,引入布朗运动和莱维飞行机制以增强算法的搜索能力;其次,根据算法进行的不同阶段分别改进黏菌的位置更新公式,以提高算法的收敛速度和收敛精度;然后,应用区间自适应的反向学习(IAOBL)策略生成反向种群,以提升种群的多样性和质量,从而提高算法的收敛速度;最后,引入收敛停滞监测策略,当算法陷入局部最优时,通过对部分黏菌个体的位置重新初始化使算法跳出局部最优。选取23个测试函数,将MSISMA与平衡黏菌算法(ESMA)、黏菌-自适应引导差分进化混合算法(SMA-AGDE)、SMA、海洋捕食者算法(MPA)和平衡优化器(EO)进行测试和比较,并对算法运行结果进行Wilcoxon秩和检验。相较于对比算法,MSISMA在19个测试函数上获得最佳平均值,在12个测试函数上获得最佳标准差,优化精度平均提升23.39%~55.97%。实验结果表明,MSISMA的收敛速度、求解精度和鲁棒性明显较优。

    图表 | 参考文献 | 相关文章 | 多维度评价
    18. 基于人工势场法和启发式采样的最优路径收敛方法
    李伟, 金世俊
    计算机应用    2021, 41 (10): 2912-2918.   DOI: 10.11772/j.issn.1001-9081.2020122021
    摘要472)      PDF (1628KB)(662)    收藏
    具有渐进最优性的快速搜索随机树(RRT *)算法在路径规划过程中确保了其概率完备性和渐进最优性,然而仍存在收敛速度慢且产生大而密集的采样空间等问题。为了加快算法的收敛速度,提出了一种基于人工势场法和启发集合采样来快速获取最优路径的方法。首先,利用人工势场法构建出一条由起点到目标点的初始路径;然后,以起点和目标点的位置和之间的距离以及初始路径的路径代价作为参数来构建初始启发采样集合;最后,限定在启发集合内进行采样,并且在算法进行的过程中调整启发采样集合的范围,进而加快路径收敛速度。仿真实验中,获取相同路径代价的路径时,所提人工势场结合启发式采样的方法为基础的结合人工势场法和启发采样策略的快速获取最优路径的RRT *(PI-RRT *)算法相较于RRT *算法,采样点数减少了约67%,算法运行时间平均缩短了约74.5%;相较于启发式RRT *(Informed-RRT *)算法,采样点数减少了约40~50%,算法运行时间平均缩短了约62.5%。所提出的最优路径收敛方法大量减少了冗余采样次数并缩短了算法运行时间,具有更高的算法效率,收敛到最优路径的速度更快。
    参考文献 | 相关文章 | 多维度评价
    19. 无人机辅助的移动边缘计算中的任务分配策略
    王岱巍, 徐高潮, 李龙
    计算机应用    2021, 41 (10): 2928-2936.   DOI: 10.11772/j.issn.1001-9081.2020121917
    摘要472)      PDF (800KB)(520)    收藏
    在使用无人机(UAV)作为计算卸载的数据收集器对用户设备(UE)提供移动边缘计算(MEC)服务的场景下,设计了一种通过UAV实现高效的UE覆盖的无线通信策略。首先,在给定UE分布的条件下,对于UAV的飞行轨迹和通信策略,使用了连续凸逼近(SCA)的优化方法来得出一种可以使全局能量最小化的近似最优解;此外,对于UE大范围分布或任务量较大的场景,提出了一种自适应聚类算法,以将地面的UE划分成尽量少的聚类,并保证每个聚类中全部UE的卸载数据都可以在一次飞行中全部完成收集;最后,将每个聚类中UE的计算卸载数据收集任务分配给一次飞行,从而达到减少单个UAV完成任务所需的派遣次数或多UAV执行任务所需的UAV派遣数量的目的。仿真结果表明,所提方法可以生成相比 K-Means算法更少的聚类数量且能快速收敛,适用于UE大范围分布下UAV辅助的计算卸载场景。
    参考文献 | 相关文章 | 多维度评价
    20. 面向工作者能力评估的众包任务分配方法的研究进展综述
    马华, 陈跃鹏, 唐文胜, 娄小平, 黄卓轩
    《计算机应用》唯一官方网站    2021, 41 (8): 2232-2241.   DOI: 10.11772/j.issn.1001-9081.2020101629
    摘要457)      PDF (1533KB)(632)    收藏
    随着互联网技术和共享经济模式的快速发展,作为一种新型的群体计算模式,近年来众包(Crowdsourcing)已经得到了广泛的应用并成为研究热点。针对众包应用的特点,为确保众包任务的完成质量,现有研究从工作者能力评估的角度出发已提出了各种不同的众包任务分配方法。首先介绍了众包的概念和分类,阐述了众包平台的工作流程及其任务特点,并在此基础上总结了现有的工作者能力评估的相关研究工作;然后从基于匹配、基于规划和基于角色协同等三个方面综述了众包任务分配方法及其遇到的挑战;最后提出了未来工作的研究方向。
    参考文献 | 相关文章 | 多维度评价
    21. 移动边缘计算环境中面向机器学习的计算迁移策略
    郭棉, 张锦友
    计算机应用    2021, 41 (9): 2639-2645.   DOI: 10.11772/j.issn.1001-9081.2020111734
    摘要451)      PDF (1127KB)(429)    收藏
    针对物联网(IoT)数据源的多样化、数据的非独立同分布性、边缘设备计算能力和能耗的异构性,提出一种集中学习和联邦学习共存的移动边缘计算(MEC)网络计算迁移策略。首先,建立与集中学习、联邦学习都关联的计算迁移系统模型,考虑了集中学习、联邦学习模型产生的网络传输延迟、计算延迟以及能耗;然后,以系统平均延迟为优化目标、以能耗和基于机器学习准确率的训练次数为限制条件构建面向机器学习的计算迁移优化模型。接着对所述计算迁移进行了博弈分析,并基于分析结果提出一种能量约束的延迟贪婪(ECDG)算法,通过延迟贪婪决策和能量约束决策更新二阶优化来获取模型的优化解。与集中式贪婪算法和面向联邦学习的客户选择(FedCS)算法相比,ECDG算法的平均学习延迟最低,约为集中式贪婪算法的1/10,为FedCS算法的1/5。实验结果表明,ECDG算法能通过计算迁移自动为数据源选择最优的机器学习模型,从而有效降低机器学习的延迟,提高边缘设备的能效,满足IoT应用的服务质量(QoS)要求。
    参考文献 | 相关文章 | 多维度评价
    22. 求解铁路物流配送中心选址问题的改进灰狼优化算法
    郝芃斐, 池瑞, 屈志坚, 涂宏斌, 池学鑫, 张地友
    计算机应用    2021, 41 (10): 2905-2911.   DOI: 10.11772/j.issn.1001-9081.2020121994
    摘要450)      PDF (1101KB)(356)    收藏
    针对单一机制的灰狼优化算法(GWO)易陷于局部最优、收敛速度慢的问题,提出了一种改进灰狼优化(IGWO)算法来解决实际铁路物流配送中心选址的问题。首先,在基本的灰狼优化算法的基础上,引入佳点集理论初始化种群,从而提高了初始种群的多样性;然后,利用差值剔除策略(DES)来增加全局寻优能力,以达到一种高效的寻优模式。仿真实验结果表明:与标准的灰狼算法相比,所提出的IGWO适应度值提高了3%,在10个测试函数中最优值精度可最多提高7个单位;与粒子群优化(PSO)算法、差分进化(DE)算法和遗传算法(GA)比较,所提算法的运行速度分别提高了39.6%、46.5%和65.9%,选址速度也明显提高。可见所提算法可用于铁路物流中心的选址。
    参考文献 | 相关文章 | 多维度评价
    23. 云边环境下基于博弈论的两阶段任务迁移策略
    王艺洁, 凡佳飞, 王陈宇
    计算机应用    2021, 41 (5): 1392-1398.   DOI: 10.11772/j.issn.1001-9081.2020071091
    摘要450)      PDF (910KB)(689)    收藏
    移动边缘计算(MEC)为计算密集型应用和资源受限的移动设备之间的冲突提供了有效解决办法,但大多关于MEC迁移的研究仅考虑移动设备与MEC服务器之间的资源分配,忽略了云计算中心的巨大计算资源。为了充分利用云和MEC资源,提出一种云边协作的任务迁移策略。首先,将云边服务器的任务迁移问题转化为博弈问题;然后,证明该博弈中纳什均衡(NE)的存在以及唯一性,并获得博弈问题的解决方案;最后,提出了一种基于博弈论的两阶段任务迁移算法来求解任务迁移问题,并通过性能指标对该算法的性能进行了评估。仿真结果表明,采用所提算法所产生的总开销分别比本地执行、云中心服务器执行和MEC服务器执行的总开销降低了72.8%、47.9%和2.65%,数值结果证实了所提策略可以实现更高的能源效率和更低的任务迁移开销,并且随着移动设备数量的增加可以很好地扩展规模。
    参考文献 | 相关文章 | 多维度评价
    24. 考虑空间众包工作者服务质量的任务分配策略及其萤火虫群优化算法求解
    冉家敏, 倪志伟, 彭鹏, 朱旭辉
    计算机应用    2021, 41 (3): 794-802.   DOI: 10.11772/j.issn.1001-9081.2020060940
    摘要443)      PDF (1196KB)(510)    收藏
    针对空间众包中的任务分配问题,考虑空间众包工作者的服务质量对分配结果的影响,从而提出了一种加入了工作者服务质量评价的任务分配策略。首先,在每个时空环境下,加入工作者的评价要素以建立充分考虑工作者服务质量和距离成本的多目标模型;其次,通过改进离散型萤火虫群优化算法的初始化及编码策略、位置移动策略、邻域搜索策略使算法收敛速度加快、全局寻优能力提高;最后,利用改进后的算法来求解模型。在模拟和真实数据集上的实验结果表明,该算法在不同规模数据集上较其他群智能算法可提高2%~25%的任务分配总得分。该算法考虑了工作者的服务质量后,可有效提高任务分配效率和最终总得分。
    参考文献 | 相关文章 | 多维度评价
    25. 基于多区域采样策略的混合粒子群优化求解多目标柔性作业车间调度问题
    张闻强, 邢征, 杨卫东
    计算机应用    2021, 41 (8): 2249-2257.   DOI: 10.11772/j.issn.1001-9081.2020101675
    摘要443)      PDF (1458KB)(512)    收藏
    柔性作业车间调度问题(FJSP)是一类应用广泛的组合优化问题。针对多目标FJSP求解过程复杂、算法易陷入局部最优的问题,提出了一种基于多区域采样策略的混合粒子群优化算法(HPSO-MRS),以同时优化最大完工时间和总机器延迟时间这两个目标。多区域采样策略能够区分粒子所在Pareto前沿面的位置,根据不同区域进行采样重组,并为采样后位于Pareto前沿面多个区域的粒子规划相应的运动方向,从而有针对性地调整粒子在多个方向上的收敛能力,并带来一定程度的均匀分布能力的提升。此外,编解码方面使用带插空机制的解码策略来消除可能存在的局部左移;粒子更新方面将传统粒子群优化(PSO)算法的粒子更新方式与遗传算法(GA)的交叉变异算子相结合,提升了算法搜索过程的多样性并避免算法陷入局部最优。把所提算法在Benchmark问题Mk01~Mk10上进行测试,与传统的HPSO、NSGA-Ⅱ、基于适应度分配策略的多目标进化算法(SPEA2)和基于分解的多目标进化算法(MOEA/D)进行算法效力和运行效率对比。显著性分析的实验结果表明,HPSO-MRS在收敛性评价指标HV和IGD上分别在85%和77.5%的对照组中显著优于对比算法,而该算法在35%的对照组中的分布性指标Spacing显著优于对比算法,且均不存在所提算法显著差于对比算法的情况。可见相较于对比算法,所提出的算法具备较好的收敛与分布性能。
    参考文献 | 相关文章 | 多维度评价
    26. 基于稳定匹配的多用户任务卸载策略
    毛莺池, 徐雪松, 刘鹏飞
    计算机应用    2021, 41 (3): 786-793.   DOI: 10.11772/j.issn.1001-9081.2020060861
    摘要427)      PDF (1162KB)(1057)    收藏
    随着许多计算密集型应用的出现,移动设备因其有限的计算能力无法满足用户时延、能耗等需求。移动边缘计算(MEC)通过无线信道将用户的任务计算卸载到MEC服务器,从而显著减少任务响应时延和能耗。针对多用户任务卸载问题,提出了基于稳定匹配的多用户任务卸载策略(MUTOSA),在保证用户的时延要求下达到能耗最小化。首先,在综合考虑时延与能耗的基础上,对独立任务场景下的多用户任务卸载问题进行建模;然后,基于博弈论的稳定匹配中的延迟接收思想,提出了一种调整策略;最后,通过不断迭代,解决了多用户任务卸载问题。实验结果表明,该策略相较于基准策略和启发式策略能够满足更多用户的时延要求,平均提高约10%的用户满意度,并能减少约50%的用户设备总能耗。所提策略在保证用户时延要求的同时有效地减少了能耗,可以有效地提高用户对于时延敏感型应用的体验。
    参考文献 | 相关文章 | 多维度评价
    27. 针对混合变量优化问题的协同进化蚁群优化算法
    韦铭燕, 陈彧, 张亮
    计算机应用    2021, 41 (5): 1412-1418.   DOI: 10.11772/j.issn.1001-9081.2020081200
    摘要427)      PDF (2082KB)(587)    收藏
    针对由连续变量和分类变量构成的混合变量优化问题(MVOP),采用协同进化策略来对混合变量决策空间进行搜索,提出了一种协同进化蚁群优化算法(CACOA MV)。CACOA MV分别采用连续和离散蚁群优化(ACO)策略生成连续和分类变量子种群,通过合作者来对连续和分类变量子向量进行评价,分别对连续和分类变量子种群进行更新来实现对混合变量决策空间的高效协同搜索。进一步地,利用信息素平滑机制增强对分类变量解空间的全局探索能力,并设计了一种面向协同进化框架的“最佳+随机合作者”的重启策略来提高协同搜索效率。与混合变量的蚁群(ACO MV)算法和种群规模线性变小的差分进化-蚁群混合变量优化算法(L-SHADE ACO)的比较表明,CACOA MV能够进行更有效的局部开发,从而提高最终结果在目标空间中的近似精度;与基于集合的混合变量差分进化算法(DE MV)相比较,CACOA MV能够在决策空间中更好地逼近全局最优解,具有更好的全局探索能力。综上,采用协同进化机制的CACOA MV能有效保持全局探索和局部开发的平衡,从而具有更好的寻优性能。
    参考文献 | 相关文章 | 多维度评价
    28. 基于改进帝国竞争算法的柔性作业车间机器故障重调度
    张国辉, 陆熙熙, 胡一凡, 孙靖贺
    计算机应用    2021, 41 (8): 2242-2248.   DOI: 10.11772/j.issn.1001-9081.2020101664
    摘要422)      PDF (1072KB)(463)    收藏
    针对机器故障下的柔性作业车间重调度问题,提出了一种改进的帝国竞争算法(ICA)。首先,以最大完工时间、机器能耗和总延迟时间为目标函数建立柔性作业车间动态重调度模型,并对三个目标采用线性加权法;然后提出了改进的ICA来把优良的信息保留到下一代,即在传统ICA的同化和革命步骤后加入一个轮盘赌的选择机制,使初始帝国中的优秀基因得以保留,并且更新后的帝国质量更优,更加贴近最优解;最后,在机器发生故障后,采用事件驱动的重调度策略对故障点后未加工的工序进行重新调度。通过生产实例,对假设的三种机器故障情景进行仿真实验,并把所提算法与改进遗传算法(GA)和遗传算法与模拟退火混合算法(GASA)这两种算法进行比较。实验结果表明了提出的改进ICA是有效且可行的。
    参考文献 | 相关文章 | 多维度评价
    29. 混合自适应粒子群工作流调度优化算法
    马学森, 许雪梅, 蒋功辉, 乔焰, 周天保
    《计算机应用》唯一官方网站    2023, 43 (2): 474-483.   DOI: 10.11772/j.issn.1001-9081.2022010001
    摘要406)   HTML8)    PDF (2548KB)(118)    收藏

    针对具有截止期的云工作流完成时间与执行成本冲突的问题,提出一种混合自适应粒子群工作流调度优化算法(HAPSO)。首先,基于截止期建立有向无环图(DAG)云工作流调度模型;然后,通过范数理想点与自适应权重的结合,将DAG调度模型转化为权衡DAG完成时间和执行成本的多目标优化问题;最后,在粒子群优化(PSO)算法的基础上引入自适应惯性权重、自适应学习因子、花朵授粉算法的概率切换机制、萤火虫算法(FA)和粒子越界处理方法,从而平衡粒子群的全局搜索与局部搜索能力,进而求解DAG完成时间与执行成本的目标优化问题。实验中对比分析了PSO、惯性权重粒子群算法(WPSO)、蚁群算法(ACO)和HAPSO的优化结果。实验结果表明,HAPSO在权衡工作流(30~300任务数)完成时间与执行成本的多目标函数值上降低了40.9%~81.1%,HAPSO在工作流截止期约束下有效权衡了完成时间与执行成本。此外,HAPSO在减少完成时间或降低执行成本的单目标上也有较好的效果,验证了HAPSO的普适性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    30. 基于汉明距离的量子 K-Means算法
    钟静, 林晨, 盛志伟, 张仕斌
    《计算机应用》唯一官方网站    2023, 43 (8): 2493-2498.   DOI: 10.11772/j.issn.1001-9081.2022091469
    摘要400)   HTML41)    PDF (1623KB)(616)    收藏

    K-Means算法在处理大规模异构数据时,通常使用欧氏距离来衡量数据点之间的相似度,然而这样存在效率低下以及计算复杂性过高的问题。受到汉明距离在处理数据相似性计算上存在显著优势的启发,提出一种基于汉明距离的量子K-Means(QKMH)算法来计算相似度。首先,将数据制备成量子态,并使用量子汉明距离计算待聚类点和K个聚类中心之间的相似度;然后,改进了Grover最小值搜索算法查找距离待聚类点最近的聚类中心;最后,循环以上步骤,直到达到规定迭代次数或者聚类中心不再改变。基于量子模拟计算框架QisKit,将提出的算法在MNIST手写数字数据集上进行了验证并与传统和改进的多种方法进行了对比,实验结果表明,QKMH算法的F1值相较于基于曼哈顿距离的量子K-Means算法提高了10个百分点,相较于最新优化的基于欧氏距离的量子K-Means算法提高了4.6个百分点;同时经计算,QKMH算法时间复杂度比上述对比算法更低。

    图表 | 参考文献 | 相关文章 | 多维度评价
2025年 45卷 4期
刊出日期: 2025-04-10
文章目录
过刊浏览
荣誉主编:张景中
主  编:徐宗本
副主编
:申恒涛 夏朝晖

国内邮发代号:62-110
国外发行代号:M4616
地址:四川成都双流区四川天府新区
   兴隆街道科智路1369号
   中科信息(科学城园区) B213
   (计算机应用编辑部)
电话:028-85224283-803
   028-85222239-803
网址:www.joca.cn
E-mail: bjb@joca.cn
期刊微信公众号
CCF扫码入会