随着传感器网络和全球定位系统等技术的进步,兼有时间与空间特性的气象数据体量呈爆炸式增长,针对时空序列预测(STSF)的深度学习模型研究得到了迅猛发展。然而,长期以来用于天气预报的传统机器学习方法在提取数据的时间相关性与空间依赖性方面的效果往往并不理想。与此同时,深度学习方法通过人工神经网络自动提取特征,可以有效提高天气预报的准确度,并且在编码长期空间信息的建模方面有相当优秀的效果。同时,由观测数据驱动的深度学习模型与基于物理理论的数值天气预报(NWP)模型结合的方式可以构建拥有更高预测精度与更长预报时间的混合模型。基于这些,将深度学习在天气预报领域的应用分析及研究进展进行了综述。首先,将天气预报领域的深度学习问题与经典深度学习问题从数据格式、问题模型与评价指标这3个方面进行了对比研究;然后,回顾了深度学习在天气预报领域的发展历程与应用现状,并总结分析了深度学习技术与NWP结合的最新进展;最后,展望了未来的发展方向和研究重点,为天气预报领域的深度学习研究提供参考。
自动驾驶场景下的目标检测是计算机视觉中重要研究方向之一,确保自动驾驶汽车对物体进行实时准确的目标检测是研究重点。近年来,深度学习技术迅速发展并被广泛应用于自动驾驶领域中,极大促进了自动驾驶领域的进步。为此,针对YOLO(You Only Look Once)算法在自动驾驶领域中的目标检测研究现状,从以下4个方面分析。首先,总结单阶段YOLO系列检测算法思想及其改进方法,分析YOLO系列算法的优缺点;其次,论述YOLO算法在自动驾驶场景下目标检测中的应用,从交通车辆、行人和交通信号识别这3个方面分别阐述和总结研究现状及应用情况;此外,总结目标检测中常用的评价指标、目标检测数据集和自动驾驶场景数据集;最后,展望目标检测存在的问题和未来发展方向。
解码运动想象脑电(EEG)信号是构造脑机接口(BCI)的关键技术之一。然而,脑电样本采集成本高、个体差异大,且信号具有时变性强、低信噪比等特点,构建跨被试模式识别方法成为了研究的关键。为此,提出一种跨被试动态多域对抗学习方法。首先采用样本协方差对齐和全局域鉴别器适应样本集边缘分布,随后采用多个类别子域鉴别器适应样本集条件分布,并自适应学习多域鉴别器的对抗系数。基于动态多域对抗学习策略,所提出的动态多域对抗网络(DMDAN)模型可学习到被试域间有泛化能力的深度特征。在BCI Competition IV 2A和2B公开数据集上的实验结果表明,DMDAN模型提高了跨被试域不变特征的学习能力,与现有对抗学习方法DRDA(Deep Representation Domain Adaptation)相比,在数据集2A和数据集2B上的平均分类准确率分别提高了1.80和2.52个百分点。可见,所提出的DMDAN模型提升了跨被试运动想象脑电信号解码性能,在不同数据集上具有不错的泛化性。
为了提高流域径流量预报的准确率,考虑数据驱动水文模型缺乏模型透明度与物理可解释性的问题,提出了一种使用图注意力网络与基于长短期记忆网络(LSTM)的双阶注意力机制(GAT-DALSTM)模型来进行径流预报。首先,以流域站点的水文资料为基础,引入图神经网络提取流域站点的拓扑结构并生成特征向量;其次,针对水文时间序列数据的特点,建立了基于双阶注意力机制的径流预报模型对流域径流量进行预测,并通过基于注意力系数热点图的模型评估方法验证所提模型的可靠性与透明度。在屯溪流域数据集上,将所提模型与图卷积神经网络(GCN)和长短期记忆网络(LSTM)在各个预测步长下进行比较,实验结果表明,所提模型的纳什效率系数分别平均提高了3.7%和4.9%,验证了GAT-DALSTM径流预报模型的准确性。从水文与应用角度对注意力系数热点图进行分析,验证了模型的可靠性与实用性。所提模型能为提高流域径流量的预测精度与模型透明度提供技术支撑。
在无人机(UAV)集群攻击地面目标时,UAV集群将分为两个编队:主攻目标的打击型UAV集群和牵制敌方的辅助型UAV集群。当辅助型UAV集群选择激进进攻或保存实力这两种动作策略时,任务场景类似于公共物品博弈,此时合作者的收益小于背叛者。基于此,提出一种基于深度强化学习的UAV集群协同作战决策方法。首先,通过建立基于公共物品博弈的UAV集群作战模型,模拟智能化UAV集群在合作中个体与集体间的利益冲突问题;其次,利用多智能体深度确定性策略梯度(MADDPG)算法求解辅助UAV集群最合理的作战决策,从而以最小的损耗代价实现集群胜利。在不同数量UAV情况下进行训练并展开实验,实验结果表明,与IDQN(Independent Deep Q-Network)和ID3QN(Imitative Dueling Double Deep Q-Network)这两种算法的训练效果相比,所提算法的收敛性最好,且在4架辅助型UAV情况下胜率可达100%,在其他UAV数情况下也明显优于对比算法。
准确的交通流量预测在帮助交通管理部门采取有效的交通控制和诱导手段以及帮助出行者合理规划路线等方面具有重要意义。针对传统深度学习模型对交通数据时空特性考虑不足的问题,在卷积神经网络(CNN)和长短时记忆(LSTM)单元的理论框架下,结合城市交通流量的时空特性,建立了一种基于注意力机制的CNN-LSTM预测模型——STCAL。首先,采用细粒度的网格划分方法来构建交通流量的时空矩阵;其次,利用CNN模型作为空间组件来提取城市交通流量不同时期下的空间特性;最后,利用基于注意力机制的LSTM模型作为动态时间组件来捕获交通流量的时序特征和趋势变动性,并实现交通流量的预测。实验结果表明,STCAL模型与循环门单元(GRU)和时空残差网络(ST-ResNet)相比,均方根误差(RMSE)指标分别减小了17.15%和7.37%,均绝对误差(MAE)指标分别减小了22.75%和9.14%,决定系数(R2)指标分别提升了11.27%和2.37%。同时,发现该模型在规律性较高的工作日的预测效果好于周末,且对工作日早高峰的预测效果最好,可见该模型可为短时城市区域交通流量变化监测提供依据。
针对单一长短时记忆(LSTM)网络在航迹预测上无法有效提取关键信息以及难以精准拟合数据分布等问题,提出基于注意力机制和生成对抗网络(GAN)的飞行器短期轨迹预测模型。首先,引入注意力机制对航迹赋予不同的权重,以提升航迹中重要特征的影响力;其次,基于LSTM提取航迹序列特征,并经汇聚层汇集时间步长内所有的飞行器特征;最后,利用GAN在对抗博弈下不断优化的特性来优化模型,从而提高模型的准确性。相较于社会生成对抗网络(SGAN),所提模型在处于爬升阶段的数据集上的平均位移误差(ADE)、最终位移误差(FDE)及最大位移误差(MDE)分别降低了20.0%、20.4%和18.3%。实验结果表明,所提模型能更精确地预测未来航迹。