Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (6): 1900-1909.DOI: 10.11772/j.issn.1001-9081.2022050721
Special Issue: 网络与通信
• Network and communications • Previous Articles Next Articles
Shangjing LIN1(), Ji MA2, Bei ZHUANG1, Yueying LI1, Ziyi LI1, Tie LI1, Jin TIAN2
Received:
2022-05-20
Revised:
2022-07-29
Accepted:
2022-08-04
Online:
2023-06-08
Published:
2023-06-10
Contact:
Shangjing LIN
About author:
MA Ji, born in 1982, Ph. D., lecturer. His research interests include deep learning, distributed algorithm, edge computing.Supported by:
林尚静1(), 马冀2, 庄琲1, 李月颖1, 李子怡1, 李铁1, 田锦2
通讯作者:
林尚静
作者简介:
林尚静(1986—),女,湖北武汉人,讲师,博士,主要研究方向:深度学习、分布式算法、边缘计算Email:linshangjing@bupt.edu.cn基金资助:
CLC Number:
Shangjing LIN, Ji MA, Bei ZHUANG, Yueying LI, Ziyi LI, Tie LI, Jin TIAN. Wireless traffic prediction based on federated learning[J]. Journal of Computer Applications, 2023, 43(6): 1900-1909.
林尚静, 马冀, 庄琲, 李月颖, 李子怡, 李铁, 田锦. 基于联邦学习的无线通信流量预测[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1900-1909.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022050721
模型 | 优缺点 |
---|---|
本文模型 | 云边协同的城市流量预测框架能够以较低的复杂度、较高的实时性实现城市全域流量预测; 基于合作博弈的联邦训练模型针对Non-IID的通信流量数据提出模型优化方法,有效提高通信流量预测的精确性 |
自回归滑动平均模型[ | 模型简单,计算复杂度低,可以准确刻画自相似网络流量;但对于存在网络异常的长时间网络流量数据并不适用 |
自回归移动平均模型[ | 模型简单,计算复杂度低;但预测精度低,仅适用于短期流量预测 |
PF-LSTM模型[ | 克服了传统LSTM网络收敛于局部最优的缺点;但训练流程相对复杂 |
Tab.1 Comparison between models of existing methods and the proposed model
模型 | 优缺点 |
---|---|
本文模型 | 云边协同的城市流量预测框架能够以较低的复杂度、较高的实时性实现城市全域流量预测; 基于合作博弈的联邦训练模型针对Non-IID的通信流量数据提出模型优化方法,有效提高通信流量预测的精确性 |
自回归滑动平均模型[ | 模型简单,计算复杂度低,可以准确刻画自相似网络流量;但对于存在网络异常的长时间网络流量数据并不适用 |
自回归移动平均模型[ | 模型简单,计算复杂度低;但预测精度低,仅适用于短期流量预测 |
PF-LSTM模型[ | 克服了传统LSTM网络收敛于局部最优的缺点;但训练流程相对复杂 |
业务类型 | 市区栅格 | 市中心栅格 | 郊区栅格 |
---|---|---|---|
SMS | (1.1,1.075, 1.825) | (2.87,1.43) | (4.53,6.64,7.82, 6.68,4.9) |
Internet | (0.465,0.225) | (0.114,0.056) | (0.2,0.34,1.96,0.4) |
Voice | (0.37,0.367, 0.363) | (1.85,0.85) | (0.32,0.16) |
Tab.2 Profit distribution of grids within alliance
业务类型 | 市区栅格 | 市中心栅格 | 郊区栅格 |
---|---|---|---|
SMS | (1.1,1.075, 1.825) | (2.87,1.43) | (4.53,6.64,7.82, 6.68,4.9) |
Internet | (0.465,0.225) | (0.114,0.056) | (0.2,0.34,1.96,0.4) |
Voice | (0.37,0.367, 0.363) | (1.85,0.85) | (0.32,0.16) |
指标 | 模型 | 市区 | 市中心 | 郊区 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
栅格1 | 栅格2 | 栅格3 | 栅格1 | 栅格2 | 栅格3 | 栅格1 | 栅格2 | 栅格3 | ||
MSE | 非联邦学习 | 0.795 | 67.098 | 68.850 | 176.013 | 157.220 | 192.501 | 1.628 | 1.657 | 1.657 |
集中式学习 | 2.757 | 18.158 | 9.666 | 505.772 | 811.141 | 848.464 | 3.524 | 3.255 | 19.358 | |
联邦学习 | 0.783 | 64.990 | 64.286 | 159.865 | 145.804 | 186.982 | 0.889 | 0.843 | 0.846 | |
RMSE | 非联邦学习 | 0.891 | 8.191 | 8.298 | 13.267 | 12.539 | 13.874 | 1.276 | 1.287 | 1.287 |
集中式学习 | 1.660 | 4.261 | 3.109 | 22.489 | 28.481 | 29.128 | 1.877 | 1.804 | 4.400 | |
联邦学习 | 0.885 | 8.062 | 8.018 | 12.644 | 12.075 | 13.764 | 0.943 | 0.918 | 0.920 | |
R2 | 非联邦学习 | 0.354 | 0.622 | 0.608 | 0.607 | 0.610 | 0.596 | 0.531 | 0.523 | 0.524 |
集中式学习 | 0.689 | 0.377 | 0.387 | 0.811 | 0.763 | 0.549 | 0.507 | 0.598 | 0.525 | |
联邦学习 | 0.399 | 0.588 | 0.589 | 0.629 | 0.638 | 0.614 | 0.493 | 0.508 | 0.512 |
Tab.3 Comparison of prediction effect of different regions
指标 | 模型 | 市区 | 市中心 | 郊区 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
栅格1 | 栅格2 | 栅格3 | 栅格1 | 栅格2 | 栅格3 | 栅格1 | 栅格2 | 栅格3 | ||
MSE | 非联邦学习 | 0.795 | 67.098 | 68.850 | 176.013 | 157.220 | 192.501 | 1.628 | 1.657 | 1.657 |
集中式学习 | 2.757 | 18.158 | 9.666 | 505.772 | 811.141 | 848.464 | 3.524 | 3.255 | 19.358 | |
联邦学习 | 0.783 | 64.990 | 64.286 | 159.865 | 145.804 | 186.982 | 0.889 | 0.843 | 0.846 | |
RMSE | 非联邦学习 | 0.891 | 8.191 | 8.298 | 13.267 | 12.539 | 13.874 | 1.276 | 1.287 | 1.287 |
集中式学习 | 1.660 | 4.261 | 3.109 | 22.489 | 28.481 | 29.128 | 1.877 | 1.804 | 4.400 | |
联邦学习 | 0.885 | 8.062 | 8.018 | 12.644 | 12.075 | 13.764 | 0.943 | 0.918 | 0.920 | |
R2 | 非联邦学习 | 0.354 | 0.622 | 0.608 | 0.607 | 0.610 | 0.596 | 0.531 | 0.523 | 0.524 |
集中式学习 | 0.689 | 0.377 | 0.387 | 0.811 | 0.763 | 0.549 | 0.507 | 0.598 | 0.525 | |
联邦学习 | 0.399 | 0.588 | 0.589 | 0.629 | 0.638 | 0.614 | 0.493 | 0.508 | 0.512 |
指标 | 模型 | SMS | Voice | Internet | ||||||
---|---|---|---|---|---|---|---|---|---|---|
市区栅格 | 市中心栅格 | 郊区栅格 | 市区栅格 | 市中心栅格 | 郊区栅格 | 市区栅格 | 市中心栅格 | 郊区栅格 | ||
MSE | 非联邦学习 | 0.795 | 176.013 | 1.628 | 0.314 | 320.364 | 0.684 | 12.122 | 130 796.234 | 238.509 |
集中式学习 | 2.757 | 505.772 | 3.524 | 0.882 | 938.018 | 1.282 | 43.396 | 16 142.886 | 260.976 | |
联邦学习 | 0.783 | 159.865 | 0.889 | 0.302 | 270.755 | 0.678 | 2.836 | 13 201.060 | 100.583 | |
RMSE | 非联邦学习 | 0.891 | 13.267 | 1.276 | 0.560 | 17.899 | 0.827 | 3.482 | 361.658 | 15.444 |
集中式学习 | 1.660 | 22.489 | 1.877 | 0.939 | 30.627 | 1.132 | 6.588 | 127.055 | 16.155 | |
联邦学习 | 0.885 | 12.644 | 0.943 | 0.550 | 16.455 | 0.823 | 1.684 | 114.896 | 10.029 | |
R2 | 非联邦学习 | 0.354 | 0.607 | 0.531 | 0.468 | 0.625 | 0.592 | 0.597 | 0.586 | 0.590 |
集中式学习 | 0.689 | 0.811 | 0.507 | 0.762 | 0.699 | 0.514 | -1.674 | 0.521 | 0.635 | |
联邦学习 | 0.399 | 0.629 | 0.493 | 0.510 | 0.233 | 0.596 | 0.825 | 0.608 | 0.859 |
Tab.4 Comparison of prediction effect of different business types
指标 | 模型 | SMS | Voice | Internet | ||||||
---|---|---|---|---|---|---|---|---|---|---|
市区栅格 | 市中心栅格 | 郊区栅格 | 市区栅格 | 市中心栅格 | 郊区栅格 | 市区栅格 | 市中心栅格 | 郊区栅格 | ||
MSE | 非联邦学习 | 0.795 | 176.013 | 1.628 | 0.314 | 320.364 | 0.684 | 12.122 | 130 796.234 | 238.509 |
集中式学习 | 2.757 | 505.772 | 3.524 | 0.882 | 938.018 | 1.282 | 43.396 | 16 142.886 | 260.976 | |
联邦学习 | 0.783 | 159.865 | 0.889 | 0.302 | 270.755 | 0.678 | 2.836 | 13 201.060 | 100.583 | |
RMSE | 非联邦学习 | 0.891 | 13.267 | 1.276 | 0.560 | 17.899 | 0.827 | 3.482 | 361.658 | 15.444 |
集中式学习 | 1.660 | 22.489 | 1.877 | 0.939 | 30.627 | 1.132 | 6.588 | 127.055 | 16.155 | |
联邦学习 | 0.885 | 12.644 | 0.943 | 0.550 | 16.455 | 0.823 | 1.684 | 114.896 | 10.029 | |
R2 | 非联邦学习 | 0.354 | 0.607 | 0.531 | 0.468 | 0.625 | 0.592 | 0.597 | 0.586 | 0.590 |
集中式学习 | 0.689 | 0.811 | 0.507 | 0.762 | 0.699 | 0.514 | -1.674 | 0.521 | 0.635 | |
联邦学习 | 0.399 | 0.629 | 0.493 | 0.510 | 0.233 | 0.596 | 0.825 | 0.608 | 0.859 |
1 | 刘少杰. 基于大数据的移动网络流量预测研究[D]. 北京:北方工业大学, 2021:31-41. 10.51393/j.jamst.2022015 |
LIU S J. Research on mobile network traffic prediction based on big data[D]. Beijing: North China University of Technology, 2021:31-41. 10.51393/j.jamst.2022015 | |
2 | 韩超,宋苏,王成红. 基于ARIMA模型的短时交通流实时自适应预测[J]. 系统仿真学报, 2004, 16(7):1530-1532, 1535. 10.3969/j.issn.1004-731X.2004.07.042 |
HAN C, SONG S, WANG C H. A real-time short-term traffic flow adaptive forecasting method based on ARIMA model [J]. Journal of System Simulation, 2004, 16(7):1530-1532, 1535. 10.3969/j.issn.1004-731X.2004.07.042 | |
3 | 高波,张钦宇,梁永生,等. 基于EMD及ARMA的自相似网络流量预测[J]. 通信学报, 2011, 32(4):47-56. 10.3969/j.issn.1000-436X.2011.04.007 |
GAO B, ZHANG Q Y, LIANG Y S, et al. Predicting self-similar networking traffic based on EMD and ARMA [J]. Journal on Communications, 2011, 32(4):47-56. 10.3969/j.issn.1000-436X.2011.04.007 | |
4 | 盛虎,张玉雪. 基于ARIMA的网络流量建模及预测研究[J]. 通信技术, 2019, 52(4):903-907. 10.3969/j.issn.1002-0802.2019.04.022 |
SHENG H, ZHANG Y X. Network traffic modeling and forecasting based on ARIMA[J]. Communications Technology, 2019, 52(4):903-907. 10.3969/j.issn.1002-0802.2019.04.022 | |
5 | 胡建伟. 基于LSTM的移动通信基站流量预测[J]. 信息技术与信息化, 2021(5):84-86. 10.3969/j.issn.1672-9528.2021.05.024 |
HU J W. Traffic prediction of mobile communication base station based on LSTM[J]. Information Technology and Informatization, 2021(5):84-86. 10.3969/j.issn.1672-9528.2021.05.024 | |
6 | 李校林,吴腾. 基于PF-LSTM网络的高效网络流量预测方法[J]. 计算机应用研究, 2019, 36(12):3833-3836. 10.19734/j.issn.1001-3695.2018.06.0394 |
LI X L, WU T. Efficient network traffic prediction method based on PF-LSTM network [J]. Application Research of Computers, 2019, 36(12):3833-3836. 10.19734/j.issn.1001-3695.2018.06.0394 | |
7 | TIAN Z D. Network traffic prediction method based on wavelet transform and multiple models fusion [J]. International Journal of Communication Systems, 2020, 33(11): No.e4415. 10.1002/dac.4415 |
8 | 康梦轩,宋俊平,范鹏飞,等. 基于深度学习的网络流量预测研究综述[J]. 计算机工程与应用, 2021, 57(10):1-9. 10.3778/j.issn.1002-8331.2101-0402 |
KANG M X, SONG J P, FAN P F, et al. Survey of network traffic forecast based on deep learning[J]. Computer Engineering and Applications, 2021, 57(10):1-9. 10.3778/j.issn.1002-8331.2101-0402 | |
9 | McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2016:1273-1282. |
10 | ZHU H Y, ZHANG H Y, JIN Y C. From federated learning to federated neural architecture search: a survey [J]. Complex and Intelligent Systems, 2021, 7(2):639-657. 10.1007/s40747-020-00247-z |
11 | YANG Q, LIU Y, CHEN T J, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): No.12. 10.1145/3298981 |
12 | MA Z Z, ZHAO M Y, CAI X J, et al. Fast-convergent federated learning with class-weighted aggregation [J]. Journal of Systems Architecture, 2021, 117: No.102125. 10.1016/j.sysarc.2021.102125 |
13 | BALAKRISHNAN R, AKDENIZ M, DHAKAL S, et al. Resource management and model personalization for federated learning over wireless edge networks[J]. Journal of Sensor and Actuator Networks, 2021, 10(1): No.17. 10.3390/jsan10010017 |
14 | DINH C T, TRAN N H, NGUYEN T D. Personalized federated learning with Moreau envelopes[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020:21394-21405. 10.1145/3404397.3404457 |
15 | SAAD W, HAN Z, DEBBAH M, et al. Coalitional game theory for communication networks: a tutorial[J]. IEEE Signal Processing Magazine, 2009, 26(5):77-97. 10.1109/msp.2009.000000 |
16 | 谢娟英,丁丽娟,王明钊. 基于谱聚类的无监督特征选择算法[J]. 软件学报, 2020, 31(4):1009-1024. 10.13328/j.cnki.jos.005927 |
XIE J Y, DING L J, WANG M Z. Spectral clustering based unsupervised feature selection algorithms [J]. Journal of Software, 2020, 31(4): 1009-1024. 10.13328/j.cnki.jos.005927 | |
17 | GREFF K, SRIVASTAVA R K, KOUTNÍK J, et al. LSTM: a search space odyssey [J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2222-2232. 10.1109/tnnls.2016.2582924 |
18 | AUMANN R. The Shapley value [M]// ICHIISHI T, NEYMAN A, TAUMAN Y. Game Theory and Applications: A Volume in Economic Theory, Econometrics, and Mathematical Economics. Cambridge: Academic Press, 1990:158-165. 10.1016/b978-0-12-370182-4.50011-8 |
[1] | Tingwei CHEN, Jiacheng ZHANG, Junlu WANG. Random validation blockchain construction for federated learning [J]. Journal of Computer Applications, 2024, 44(9): 2770-2776. |
[2] | Zheyuan SHEN, Keke YANG, Jing LI. Personalized federated learning method based on dual stream neural network [J]. Journal of Computer Applications, 2024, 44(8): 2319-2325. |
[3] | Wei LUO, Jinquan LIU, Zheng ZHANG. Dual vertical federated learning framework incorporating secret sharing technology [J]. Journal of Computer Applications, 2024, 44(6): 1872-1879. |
[4] | Xuebin CHEN, Zhiqiang REN, Hongyang ZHANG. Review on security threats and defense measures in federated learning [J]. Journal of Computer Applications, 2024, 44(6): 1663-1672. |
[5] | Sunjie YU, Hui ZENG, Shiyu XIONG, Hongzhou SHI. Incentive mechanism for federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(2): 344-352. |
[6] | Zucuan ZHANG, Xuebin CHEN, Rui GAO, Yuanhuai ZOU. Federated learning client selection method based on label classification [J]. Journal of Computer Applications, 2024, 44(12): 3759-3765. |
[7] | Xuebin CHEN, Changsheng QU. Overview of backdoor attacks and defense in federated learning [J]. Journal of Computer Applications, 2024, 44(11): 3459-3469. |
[8] | Shuaihua ZHANG, Shufen ZHANG, Mingchuan ZHOU, Chao XU, Xuebin CHEN. Malicious traffic detection model based on semi-supervised federated learning [J]. Journal of Computer Applications, 2024, 44(11): 3487-3494. |
[9] | Jie WU, Xuezhong QIAN, Wei SONG. Personalized federated learning based on similarity clustering and regularization [J]. Journal of Computer Applications, 2024, 44(11): 3345-3353. |
[10] | Chunyong YIN, Yongcheng ZHOU. Automatically adjusted clustered federated learning for double-ended clustering [J]. Journal of Computer Applications, 2024, 44(10): 3011-3020. |
[11] | Hui ZHOU, Yuling CHEN, Xuewei WANG, Yangwen ZHANG, Jianjiang HE. Deep shadow defense scheme of federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(1): 223-232. |
[12] | Mengjie LAN, Jianping CAI, Lan SUN. Self-regularization optimization methods for Non-IID data in federated learning [J]. Journal of Computer Applications, 2023, 43(7): 2073-2081. |
[13] | Wanzhen CHEN, En ZHANG, Leiyong QIN, Shuangxi HONG. Privacy-preserving federated learning algorithm based on blockchain in edge computing [J]. Journal of Computer Applications, 2023, 43(7): 2209-2216. |
[14] | Sheng YE, Jing WANG, Jianfeng XIN, Guiling WANG, Chenhong GUO. Dynamic evolution method for microservice composition systems in cloud-edge environment [J]. Journal of Computer Applications, 2023, 43(6): 1696-1704. |
[15] | Shaochen HAO, Zizuan WEI, Yao MA, Dan YU, Yongle CHEN. Network intrusion detection model based on efficient federated learning algorithm [J]. Journal of Computer Applications, 2023, 43(4): 1169-1175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||