Journal of Computer Applications

    Next Articles

Fault-tolerant method for industrial IoT edge computing based on sparse graph attention

NIU Yuqing1,2,3,4, ZHANG Zhiyong1,2,3,4, ZHANG Zhongya1,2,3,4, ZHANG Hang1,2,3,4   

  1. 1. College of Information Engineering and Artificial Intelligence, Henan University of Science and Technology 2.Henan International Joint Laboratory of Cyberspace Security Applications (Henan University of Science and Technology) 3.Henan Intelligent Manufacturing Big Data Development Innovation Laboratory (Henan University of Science and Technology) 4.Institute of Artificial Intelligence Innovations, Henan University of Science and Technology
  • Received:2025-09-28 Revised:2025-10-29 Online:2025-11-05 Published:2025-11-05
  • About author:NIU Yuqing, born in 2001, M. S. candidate. Her research interests include industrial Internet of Things, edge computing. ZHANG Zhiyong, born in 1975, Ph. D., professor. His research interests include cyberspace security, big data artificial intelligence. ZHANG Zhongya, born in 1985, Ph. D., lecturer. His research interests include quantum computing, analysis and design of symmetric cryptographic algorithms. ZHANG Hang, born in 1991, Ph. D., lecturer. His research interests include smart grid cybersecurity, artificial intelligence.
  • Supported by:
    Key Research and Development Plan Special Project of Henan Province (241111211400), Henan Province Science and Technology Research Project (242102211077), Henan Province University Key Scientific Research Project (23A520008), Henan Province Natural Science Fund Grant (252300421509)

基于稀疏图注意力的工业物联网边缘计算容错方法

牛钰清1,2,3,4,张志勇1,2,3,4,张中亚1,2,3,4,张航1,2,3,4   

  1. 1.河南科技大学 信息工程学院(人工智能学院) 2.河南省网络空间安全应用国际联合实验室(河南科技大学) 3.河南省智能制造大数据发展创新实验室(河南科技大学) 4.河南科技大学 人工智能创新研究院
  • 通讯作者: 张志勇
  • 作者简介:牛钰清(2001—),女,河南鹿邑人,硕士研究生,主要研究方向:工业物联网、边缘计算;张志勇(1975—),男,河南新乡人,教授,博士,CCF高级会员,主要研究方向:网络空间安全、人工智能与大数据;张中亚(1985—),男,河南太康人,讲师,博士,主要研究方向:量子计算、对称密码算法分析与设计;张航(1991—),男,河南南阳人,讲师,博士,主要研究方向:智能电网网络安全、人工智能。
  • 基金资助:
    河南省重点研发专项基金资助项目(241111211400);河南省科技攻关计划资助项目(242102211077);河南省高校重点科研项目资助项目(23A520008);河南省自然科学基金科学基金资助项目(252300421509)

Abstract: To address the issues of node overload and failure caused by resource constraints in industrial Internet of Things (IIoT) edge computing environments, this paper proposes a fault-tolerant method based on edge intelligence, termed SGAT-GAN (Sparse Graph Attention-based Generative Adversarial Network). The proposed method integrates a fault prediction mechanism and employs a Fault Embedding Encoder (FEE) to achieve real-time fault detection, classification, and prediction, thereby enhancing the system’s fault-tolerance capability. Furthermore, by combining a Generative Adversarial Network (GAN) with a preemptive migration strategy for optimal fault recovery, the method provides an efficient and intelligent solution for edge computing systems in the IIoT. Experimental results conducted in a Raspberry Pi–based edge environment demonstrate that the proposed method outperforms four state-of-the-art approaches—Proactive Coordinated Fault Tolerance (PCFT), Clustering-based Multiple Objective Dynamic Load Balancing technique (CMODLB), Self-supervised Deep Proxy-based Fault Tolerance (DeepFT), and Preemptive Migration Prediction Network (PreGAN)—in terms of average fault detection precision and average classification accuracy. Specifically, compared with the best-performing PreGAN method, SGAT-GAN achieves improvements of 1.96 and 1.62 percentage points in these two metrics, respectively, validating its effectiveness and superiority in enhancing the reliability of IIoT edge computing systems.

Key words: Industrial Internet of Things (IIoT), edge computing, fault-tolerant method, fault prediction, Generative Adversarial Network (GAN)

摘要: 针对工业物联网(IIoT)边缘计算环境中因资源受限导致节点过载甚至故障的问题,提出一种基于边缘智能的容错方法SGAT-GAN(Sparse Graph ATtention-based Generative Adversarial Network)。该方法融合故障预测机制,通过故障嵌入编码器(FEE)技术实现故障的实时检测、分类与预测,提升系统的容错能力。在此基础上,结合生成对抗网络(GAN)和抢先迁移选择最优策略对故障进行智能补救,为工业物联网中的边缘计算系统提供一种高效、智能的解决方案。在基于Raspberry-Pi的边缘环境中进行的实验结果表明,该方法在故障平均检测精确率和平均分类准确率上优于主动协调容错(PCFT)、基于聚类的多目标动态负载均衡技术(CMODLB)、基于自监督深度代理模型的容错方法(DeepFT)和预迁移预测网络(PreGAN)4种先进方法。具体而言,相较于表现最佳的PreGAN方法,本文方法在这两项指标上分别提高了1.96个百分点和1.62个百分点,验证了该方法在提升工业物联网边缘计算系统可靠性方面的有效性与优越性。

关键词: 工业物联网, 边缘计算, 容错方法, 故障预测, 生成对抗网络

CLC Number: