Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (12): 3409-3418.DOI: 10.11772/j.issn.1001-9081.2021060895
Special Issue: 综述; 第十八届中国机器学习会议(CCML 2021)
• The 18th China Conference on Machine Learning • Next Articles
Keyang CHENG1,2(), Chunyun MENG1, Wenshan WANG2, Wenxi SHI2,3, Yongzhao ZHAN1
Received:
2021-05-12
Revised:
2021-06-21
Accepted:
2021-06-25
Online:
2021-08-20
Published:
2021-12-10
Contact:
Keyang CHENG
About author:
MENG Chunyun, born in 1994, M. S. candidate. His research interests include computer vision, pattern recognition.Supported by:
成科扬1,2(), 孟春运1, 王文杉2, 师文喜2,3, 詹永照1
通讯作者:
成科扬
作者简介:
孟春运(1994—),男,江苏扬州人,硕士研究生,主要研究方向:计算机视觉、模式识别基金资助:
CLC Number:
Keyang CHENG, Chunyun MENG, Wenshan WANG, Wenxi SHI, Yongzhao ZHAN. Research advances in disentangled representation learning[J]. Journal of Computer Applications, 2021, 41(12): 3409-3418.
成科扬, 孟春运, 王文杉, 师文喜, 詹永照. 解耦表征学习研究进展[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3409-3418.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021060895
1 | BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828. 10.1109/tpami.2013.50 |
2 | 胡铭菲,刘建伟,左信. 深度生成模型综述[J/OL]. 自动化学报. (2020-09-21) [2020-09-27]., |
LIU J W, ZUO X. Survey on deep generative models[J/OL]. Acta Automatica Sinica. (2020-09-21) [2020-09-27].. | |
3 | GIBSON J J. The Ecological Approach to Visual Perception: Classic Edition[M]. Hove, East Sussex: Psychology Press, 1979:89-90. 10.4324/9781315740218 |
4 | DODWELL P C. The Lie transformation group model of visual perception[J]. Perception and Psychophysics, 1983, 34(1): 1-16. 10.3758/bf03205890 |
5 | LOWE D G. Object recognition from local scale-invariant features[C]// Proceedings of the 7th IEEE International Conference on Computer Vision. Piscataway: IEEE, 1999: 1150-1157. 10.1109/iccv.1999.790410 |
6 | DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005: 886-893. 10.1109/cvpr.2005.177 |
7 | SUNDARAMOORTHI G, PETERSEN P, VARADARAJAN V S, et al. On the set of images modulo viewpoint and contrast changes[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 832-839. 10.1109/cvpr.2009.5206704 |
8 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc. , 2012, 25: 1097-1105. |
9 | YAO X, NEWSON A, GOUSSEAU Y, et al. A latent transformer for disentangled face editing in images and videos[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 13789-13798. 10.1109/icip42928.2021.9506060 |
10 | LECUN Y, JACKEL L D, BOSER B, et al. Handwritten digit recognition: applications of neural network chips and automatic learning[J]. IEEE Communications Magazine, 1989, 27(11): 41-46. 10.1109/35.41400 |
11 | WANG H, ULLAH M M, KLÄSER A, et al. Evaluation of local spatio-temporal features for action recognition[C]// Proceedings of the 2009 British Machine Vision Conference. Durham: BMVA Press, 2009: No.143. 10.5244/c.23.124 |
12 | COURVILLE A, BERGSTRA J, BENGIO Y. A spike and slab restricted Boltzmann machine[C]// Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2011: 233-241. |
13 | KOHONEN T. Emergence of invariant-feature detectors in the adaptive-subspace self-organizing map[J]. Biological Cybernetics, 1996, 75(4): 281-291. 10.1007/s004220050295 |
14 | HYVÄRINEN A, HOYER P. Emergence of phase- and shift-invariant features by decomposition of natural images into independent feature subspaces[J]. Neural Computation, 2000, 12(7): 1705-1720. 10.1162/089976600300015312 |
15 | KAVUKCUOGLU K, RANZATO M, FERGUS R, et al. Learning invariant features through topographic filter maps[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 1605-1612. 10.1109/cvpr.2009.5206545 |
16 | RANZATO M, HINTON G E. Modeling pixel means and covariances using factorized third-order Boltzmann machines[C]// Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010: 2551-2558. 10.1109/cvpr.2010.5539962 |
17 | HIGGINS I, AMOS D, PFAU D, et al. Towards a definition of disentangled representations[EB/OL]. (2018-12-05) [2020-09-27].. |
18 | DAHL G E, RANZATO M, MOHAMED A R, et al. Phone recognition with the mean-covariance restricted Boltzmann machine[C]// Proceedings of the 23rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2010: 469-477. |
19 | SEIDE F, LI G, YU D. Conversational speech transcription using context-dependent deep neural networks[C]// Proceedings of the 12th Annual Conference of the International Speech Communication Association. Grenoble: ISCA, 2011: 437-440. 10.21437/interspeech.2011-169 |
20 | CHARTSIAS A, JOYCE T, PAPANASTASIOU G, et al. Disentangled representation learning in cardiac image analysis[J]. Medical Image Analysis, 2019, 58: No.101535. 10.1016/j.media.2019.101535 |
21 | DAHL G E, YU D, DENG L, et al. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1): 30-42. 10.1109/tasl.2011.2134090 |
22 | 许世斌,高子淑. 基于共性假设的零样本生成模型[J]. 计算机应用与软件, 2020, 37(8):177-181. 10.3969/j.issn.1000-386x.2020.08.031 |
XU S B, GAO Z S. A generative model for zero shot learning based on common hypothesis[J]. Computer Applications and Software, 2020, 37(8):177-181. 10.3969/j.issn.1000-386x.2020.08.031 | |
23 | 王德文,魏波涛. 基于孪生变分自编码器的小样本图像分类方法[J]. 智能系统学报, 2021, 16(2): 254-262. 10.11992/tis.201906022 |
WANG D W, WEI B T. A small-sample image classification method based on a Siamese variational auto-encoder[J]. CAAI Transactions on Intelligent Systems, 2021, 16(2): 254-262. 10.11992/tis.201906022 | |
24 | BOULANGER-LEWANDOWSKI N, BENGIO Y, VINCENT P. Modeling temporal dependencies in high-dimensional sequences: application to polyphonic music generation and transcription[C]// Proceedings of the 29th International Conference on International Conference on Machine Learning. Madison, WI: Omnipress , 2012: 1881-1888. 10.1109/icassp.2013.6638244 |
25 | HAMEL P, LEMIEUX S, BENGIO Y, et al. Temporal pooling and multiscale learning for automatic annotation and ranking of music audio[C]// Proceedings of the 12th International Society for Music Information Retrieval Conference. [S.l.]: ISMIR, 2011: 729-734. http://dx.doi.org/ |
26 | HINTON G E. Learning distributed representations of concepts[M]// MORRIS R G M, Parallel Distributed Processing: Implications for Psychology and Neurobiology. Oxford: Oxford University Press, 1989: 46-61. |
27 | BENGIO Y. Neural net language models[J]. Scholarpedia, 2008, 3(1): No.3881. 10.4249/scholarpedia.3881 |
28 | COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12: 2493-2537. |
29 | BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828. 10.1109/tpami.2013.50 |
30 | TANG Y B, TANG Y X, ZHU Y Y, et al. A disentangled generative model for disease decomposition in chest X-rays via normal image synthesis[J]. Medical Image Analysis, 2021, 67: No.101839. 10.1016/j.media.2020.101839 |
31 | 屠恩美,杨杰. 半监督学习理论及其研究进展概述[J]. 上海交通大学学报, 2018, 52(10):1280-1291. 10.16183/j.cnki.jsjtu.2018.10.017 |
TU E M, YANG J. A review of semi-supervised learning theories and recent advances[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10):1280-1291. 10.16183/j.cnki.jsjtu.2018.10.017 | |
32 | HAO Z F, LV D, LI Z J, et al. Semi-supervised disentangled framework for transferable named entity recognition[J]. Neural Networks, 2021, 135: 127-138. 10.1016/j.neunet.2020.11.017 |
33 | LI H L, WAN R J, WANG S Q, et al. Unsupervised domain adaptation in the wild via disentangling representation learning[J]. International Journal of Computer Vision, 2021, 129(2): 267-283. 10.1007/s11263-020-01364-5 |
34 | COURVILLE A, BERGSTRA J, BENGIO Y. Unsupervised models of images by spike-and-slab RBMs[C]// Proceedings of the 28th International Conference on International Conference on Machine Learning. Madison, WI: Omnipress, 2011: 1145-1152. |
35 | DESJARDINS G, COURVILLE A, BENGIO Y. Disentangling factors of variation via generative entangling[EB/OL]. (2012-10-19) [2021-04-22].. |
36 | HINTON G E, KRIZHEVSKY A, WANG S D. Transforming auto-encoders[C]// Proceedings of the 2011 International Conference on Artificial Neural Networks, LNCS6791. Berlin: Springer, 2011: 44-51. |
37 | MEMISEVIC R, HINTON G E. Learning to represent spatial transformations with factored higher-order Boltzmann machines[J]. Neural Computation, 2010, 22(6): 1473-1492. 10.1162/neco.2010.01-09-953 |
38 | TENENBAUM J B, DE SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323. 10.1126/science.290.5500.2319 |
39 | RIFAI S, VINCENT P, MULLER X, et al. Contractive auto-encoders: explicit invariance during feature extraction[C]// Proceedings of the 28th International Conference on International Conference on Machine Learning. Madison, WI: Omnipress, 2011: 833-840. 10.1007/978-3-642-23783-6_41 |
40 | TANG Y C, SALAKHUTDINOV R, HINTON G. Tensor analyzers[C]// Proceedings of the 30th International Conference on Machine Learning. New York: JMLR.org, 2013: 163-171. |
41 | 卫亮亮. 基于流结构变分推断的深度生成模型研究[D]. 保定:河北大学, 2019. 10.25221/fee.376.2 |
WEI L L. Research on deep generative models based on variational inference of flow structure[D]. Baoding: Hebei University, 2019. 10.25221/fee.376.2 | |
42 | BENGIO Y, MESNIL G, DAUPHIN Y, et al. Better mixing via deep representations[C]// Proceedings of the 30th International Conference on Machine Learning. New York: JMLR.org, 2013: 552-560. 10.1007/978-3-642-36657-4_1 |
43 | REED S, SOHN K, ZHANG Y T, et al. Learning to disentangle factors of variation with manifold interaction[C]// Proceedings of the 31st International Conference on Machine Learning. New York: JMLR.org, 2014: 1431-1439. |
44 | BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1): 1-127. 10.1561/2200000006 |
45 | LI X Q, CHEN L B, WANG L, et al. SCGAN: disentangled representation learning by adding similarity constraint on generative adversarial nets[J]. IEEE Access, 2019, 7: 147928-147938. 10.1109/access.2018.2872695 |
46 | MATHIEU M, ZHAO J B, SPRECHMANN P, et al. Disentangling factors of variation in deep representation using adversarial training[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 5047-5055. |
47 | 杨晨曦,左劼,孙频捷. 基于自编码器的零样本学习方法研究进展[J]. 现代计算机, 2020(1):48-52. 10.3969/j.issn.1007-1423.2020.01.011 |
YANG C X, ZUO J, SUN P J. Research progress of zero-shot learning method based on autoencoder[J]. Modern Computer, 2020(1):48-52. 10.3969/j.issn.1007-1423.2020.01.011 | |
48 | 王路,李寿山. 基于变分自编码器的问题识别方法[J]. 郑州大学学报(理学版), 2019, 51(3):79-84. 10.18653/v1/2020.emnlp-main.307 |
WANG L, LI S S. Question detection method based on variational auto-encoder[J]. Journal of Zhengzhou University (Natural Science Edition), 2019, 51(3):79-84. 10.18653/v1/2020.emnlp-main.307 | |
49 | 翟正利,梁振明,周炜,等. 变分自编码器模型综述[J]. 计算机工程与应用, 2019, 55(3):1-9. 10.3778/j.issn.1002-8331.1810-0284 |
ZHAI Z L, LIANG Z M, ZHOU W, et al. Research overview of variational auto-encoders models[J]. Computer Engineering and Applications, 2019, 55(3):1-9. 10.3778/j.issn.1002-8331.1810-0284 | |
50 | KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. (2014-05-01) [2020-09-27].. 10.1561/9781680836233 |
51 | HIGGINS I, MATTHEY L, PAL A, et al. β-VAE: learning basic visual concepts with a constrained variational framework[EB/OL]. [2020-09-27].. |
52 | HIGGINS I, SONNERAT N, MATTHEY L, et al. SCAN: learning abstract hierarchical compositional visual concepts[EB/OL]. (2018-06-06) [2020-09-27].. |
53 | HIGGINS I, CHANG L, LANGSTON V, et al. Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons[J]. Nature Communications, 2021, 12(1): 1-14. 10.1038/s41467-021-26751-5 |
54 | BURGESS C P, HIGGINS I, PAL A, et al. Understanding disentangling in β-VAE[EB/OL]. (2018-04-10) [2020-09-27].. |
55 | KIM H, MNIH A. Disentangling by factorising[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 2649-2658. |
56 | PATACCHIOLA M, FOX-ROBERTS P, ROSTEN E. Y-Autoencoders: disentangling latent representations via sequential encoding[J]. Pattern Recognition Letters, 2020, 140: 59-65. 10.1016/j.patrec.2020.09.025 |
57 | HIGGINS I, PAL A, RUSU A, et al. DARLA: improving zero-shot transfer in reinforcement learning[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1480-1490. |
58 | CHEN R T Q, LI X C, GROSSE R, et al. Isolating sources of disentanglement in VAEs[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 2615-2625. |
59 | RIDGEWAY K, MOZER M C. Learning deep disentangled embeddings with the F-statistic loss[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 185-194. |
60 | KUMAR A, SATTIGERI P, BALAKRISHNAN A. Variational inference of disentangled latent concepts from unlabeled observations[EB/OL]. (2018-12-27) [2020-09-27].. |
61 | IIZUKA S, SIMO-SERRA E, ISHIKAWA H. Let there be color!: joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification[J]. ACM Transactions on Graphics, 2016, 35(4): No.110. 10.1145/2897824.2925974 |
62 | EIGEN D, FERGUS R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 2650-2658. 10.1109/iccv.2015.304 |
63 | ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5967-5976. 10.1109/cvpr.2017.632 |
64 | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2223-2232. 10.1109/iccv.2017.244 |
65 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS9351. Cham: Springer, 2015: 234-241. |
66 | MA L, SUN Q, GEORGOULIS S, et al. Disentangled person image generation[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 99-108. 10.1109/cvpr.2018.00018 |
67 | BARROW H G, TENENBAUM J M. Recovering intrinsic scene characteristics from images[M]// HANSON A, RISEMAN E, Computer Vision Systems. New York: Academic Press, 1978: 3-26. |
68 | Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828. 10.1109/tpami.2013.50 |
69 | GONZALEZ-GARCIA A, WEIJER J V D, BENGIO Y. Image-to-image translation for cross-domain disentanglement[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 1294-1305. |
70 | ZHU J Y, ZHANG R, PATHAK D, et al. Toward multimodal image-to-image translation[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 465-476. |
71 | LEE H Y, TSENG H Y, MAO Q, et al. DRIT++: diverse image-to-image translation via disentangled representations[J]. International Journal of Computer Vision, 2020, 128(10/11): 2402-2417. 10.1007/s11263-019-01284-z |
72 | 白静,田栋文,张霖,等. 跨域变分对抗自编码器[J]. 计算机辅助设计与图形学学报, 2020, 32(9):1402-1410. 10.3724/SP.J.1089.2020.18115 |
BAI J, TIAN D W, ZHANG L, et al. Cross-domain variational adversarial autoencoder[J]. Journal of Computer-Aided Design and Graphics, 2020, 32(9):1402-1410. 10.3724/SP.J.1089.2020.18115 | |
73 | CHIAPPA S, RACANIERE S, WIERSTRA D, et al. Recurrent environment simulators[EB/OL]. (2017-04-19) [2020-09-27].. |
74 | AGRAWAL P, NAIR A, ABBEEL P, et al. Learning to poke by poking: experiential learning of intuitive physics[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 5092-5100. 10.1109/icra.2017.7989247 |
75 | DENTON E, BIRODKAR V. Unsupervised learning of disentangled representations from video[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 4417-4426. |
76 | 徐思. 基于对抗自编码器的半监督分类模型研究[D]. 青岛:青岛大学, 2019. 10.3934/mfc.2019002 |
XU S. Research on semi-supervised classification model based on adversarial auto-encoder[D]. Qingdao: Qingdao University, 2019. 10.3934/mfc.2019002 | |
77 | SUN P F, SU X, GUO S Q, et al. Cycle representation-disentangling network: learning to completely disentangle spatial-temporal features in video[J]. Applied Intelligence, 2020, 50(12): 4261-4280. 10.1007/s10489-020-01750-z |
78 | ZHU J Y, ZHANG Z T, ZHANG C K, et al. Visual object networks: image generation with disentangled 3D representations[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 118-129. |
79 | LOCATELLO F, BAUER S, LUCIC M, et al. Challenging common assumptions in the unsupervised learning of disentangled representations[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 4114-4124. 10.1609/aaai.v34i09.7120 |
80 | LOCATELLO F, BAUER S, LUCIC M, et al. A sober look at the unsupervised learning of disentangled representations and their evaluation[J]. Journal of Machine Learning, 2020, 21: 1-62. 10.1609/aaai.v34i09.7120 |
81 | STEENKISTE S VAN, LOCATELLO F, SCHMIDHUBER J, et al. Are disentangled representations helpful for abstract visual reasoning?[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 14245-14258. |
82 | DO K, TRAN T. Theory and evaluation metrics for learning disentangled representations[EB/OL]. (2020-02-04) [2020-09-27].. |
[1] | Yu DU, Yan ZHU. Constructing pre-trained dynamic graph neural network to predict disappearance of academic cooperation behavior [J]. Journal of Computer Applications, 2024, 44(9): 2726-2731. |
[2] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[3] | Tingjie TANG, Jiajin HUANG, Jin QIN, Hui LU. Session-based recommendation based on graph co-occurrence enhanced multi-layer perceptron [J]. Journal of Computer Applications, 2024, 44(8): 2357-2364. |
[4] | Ying YANG, Xiaoyan HAO, Dan YU, Yao MA, Yongle CHEN. Graph data generation approach for graph neural network model extraction attacks [J]. Journal of Computer Applications, 2024, 44(8): 2483-2492. |
[5] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
[6] | Xuebin CHEN, Zhiqiang REN, Hongyang ZHANG. Review on security threats and defense measures in federated learning [J]. Journal of Computer Applications, 2024, 44(6): 1663-1672. |
[7] | Zihao YAO, Yuanming LI, Ziqiang MA, Yang LI, Lianggen WEI. Multi-object cache side-channel attack detection model based on machine learning [J]. Journal of Computer Applications, 2024, 44(6): 1862-1871. |
[8] | Wei SHE, Yang LI, Lihong ZHONG, Defeng KONG, Zhao TIAN. Hyperparameter optimization for neural network based on improved real coding genetic algorithm [J]. Journal of Computer Applications, 2024, 44(3): 671-676. |
[9] | Yi ZHENG, Cunyi LIAO, Tianqian ZHANG, Ji WANG, Shouyin LIU. Image denoising-based cell-level RSRP estimation method for urban areas [J]. Journal of Computer Applications, 2024, 44(3): 855-862. |
[10] | Zhuo ZHANG, Huazhu CHEN. Deep subspace clustering based on multiscale self-representation learning with consistency and diversity [J]. Journal of Computer Applications, 2024, 44(2): 353-359. |
[11] | Xuebin CHEN, Changsheng QU. Overview of backdoor attacks and defense in federated learning [J]. Journal of Computer Applications, 2024, 44(11): 3459-3469. |
[12] | Yunhua ZHU, Bing KONG, Lihua ZHOU, Hongmei CHEN, Chongming BAO. Multi-view clustering network guided by graph contrastive learning [J]. Journal of Computer Applications, 2024, 44(10): 3267-3274. |
[13] | Renke SUN, Zhiyu HUANGFU, Hu CHEN, Zhongnian LI, Xinzheng XU. Survey of neural architecture search [J]. Journal of Computer Applications, 2024, 44(10): 2983-2994. |
[14] | Wenze CHAI, Jing FAN, Shukui SUN, Yiming LIANG, Jingfeng LIU. Overview of deep metric learning [J]. Journal of Computer Applications, 2024, 44(10): 2995-3010. |
[15] | Chunyong YIN, Yongcheng ZHOU. Automatically adjusted clustered federated learning for double-ended clustering [J]. Journal of Computer Applications, 2024, 44(10): 3011-3020. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||