Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (8): 2530-2536.DOI: 10.11772/j.issn.1001-9081.2024071012
• Artificial intelligence • Previous Articles
Haifeng WU1,2, Liqing TAO1, Yusheng CHENG1,2()
Received:
2024-07-18
Revised:
2024-11-12
Accepted:
2024-11-13
Online:
2024-11-19
Published:
2025-08-10
Contact:
Yusheng CHENG
About author:
WU Haifeng, born in 1982, M. S., professor. His research interests include machine learning, data mining.Supported by:
通讯作者:
程玉胜
作者简介:
吴海峰(1982—),男,安徽安庆人,教授,硕士,主要研究方向:机器学习、数据挖掘基金资助:
CLC Number:
Haifeng WU, Liqing TAO, Yusheng CHENG. Partial label regression algorithm integrating feature attention and residual connection[J]. Journal of Computer Applications, 2025, 45(8): 2530-2536.
吴海峰, 陶丽青, 程玉胜. 集成特征注意力和残差连接的偏标签回归算法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2530-2536.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024071012
数据集 | 特征数 | 样本数 | ||
---|---|---|---|---|
训练集 | 验证集 | 测试集 | ||
Abalone | 8 | 2 507 | 835 | 835 |
Airfoil | 5 | 903 | 300 | 300 |
Concrete | 8 | 618 | 206 | 206 |
Cpu-act | 21 | 4 916 | 1 638 | 1 638 |
Housing | 13 | 304 | 101 | 101 |
Power-plant | 4 | 5 742 | 1 913 | 1 913 |
Tab. 1 Benchmark datasets used in experiments
数据集 | 特征数 | 样本数 | ||
---|---|---|---|---|
训练集 | 验证集 | 测试集 | ||
Abalone | 8 | 2 507 | 835 | 835 |
Airfoil | 5 | 903 | 300 | 300 |
Concrete | 8 | 618 | 206 | 206 |
Cpu-act | 21 | 4 916 | 1 638 | 1 638 |
Housing | 13 | 304 | 101 | 101 |
Power-plant | 4 | 5 742 | 1 913 | 1 913 |
数据集 | AVGL-MSE | AVGL-MAE | AVGL-Huber | AVGV-MSE | AVGV-MAE | AVGV-Hube | IDent | PIDent | PLR-FARC | ||
---|---|---|---|---|---|---|---|---|---|---|---|
FARCID | FARCPID | ||||||||||
Abalone | 2 | 2.15 | 1.48 | 1.48 | 2.15 | 2.15 | 1.69 | 1.49 | 1.42 | ||
4 | 2.75 | 1.56 | 1.64 | 2.75 | 2.75 | 2.77 | 1.48 | 1.52 | 1.45 | ||
8 | 3.10 | 1.95 | 2.07 | 3.10 | 3.10 | 3.46 | 1.52 | 1.50 | |||
16 | 3.16 | 2.88 | 2.87 | 3.16 | 3.16 | 3.62 | 1.55 | 1.48 | |||
Airfoil | 2 | 3.8 | 3.19 | 3.21 | 3.80 | 3.41 | 3.66 | 2.21 | 2.15 | 1.44 | |
4 | 4.16 | 3.26 | 3.30 | 4.16 | 3.97 | 3.99 | 2.26 | 2.51 | 1.53 | ||
8 | 4.80 | 3.65 | 3.74 | 4.80 | 4.66 | 5.02 | 2.99 | 3.29 | 1.52 | ||
16 | 5.40 | 4.33 | 4.44 | 5.40 | 5.18 | 5.40 | 4.07 | 4.33 | 2.48 | ||
Concrete | 2 | 8.17 | 5.14 | 5.10 | 8.17 | 7.79 | 7.79 | 4.78 | 4.77 | 4.47 | |
4 | 8.70 | 5.36 | 5.57 | 8.69 | 8.77 | 8.77 | 5.13 | 5.42 | 5.30 | ||
8 | 10.87 | 7.71 | 7.82 | 10.83 | 10.53 | 10.53 | 5.96 | 6.51 | 5.53 | ||
16 | 11.97 | 9.26 | 9.26 | 11.97 | 12.45 | 12.45 | 7.79 | 7.93 | 5.85 | ||
Cpu-act | 2 | 11.92 | 2.06 | 2.15 | 11.70 | 8.72 | 8.58 | 1.89 | 1.78 | ||
4 | 19.27 | 3.65 | 3.92 | 18.65 | 19.34 | 18.28 | 1.91 | 1.87 | 1.83 | ||
8 | 23.81 | 15.29 | 14.98 | 23.81 | 27.95 | 28.20 | 1.93 | 1.82 | 1.95 | ||
16 | 29.08 | 23.73 | 23.17 | 29.07 | 30.57 | 30.65 | 2.07 | 2.06 | 1.91 | ||
Housing | 2 | 4.15 | 2.99 | 3.33 | 4.15 | 4.97 | 5.06 | 3.22 | 2.16 | 2.64 | |
4 | 4.81 | 3.15 | 3.42 | 4.81 | 5.19 | 5.26 | 3.05 | 3.07 | 2.78 | ||
8 | 5.84 | 4.29 | 4.56 | 5.84 | 6.52 | 6.47 | 3.32 | 4.93 | 2.80 | ||
16 | 6.61 | 5.06 | 5.02 | 6.61 | 7.06 | 7.48 | 5.06 | 4.88 | 3.58 | ||
Power-plant | 2 | 6.45 | 3.88 | 3.86 | 6.45 | 5.37 | 5.71 | 3.70 | 3.70 | 3.04 | |
4 | 8.57 | 4.28 | 4.48 | 8.57 | 8.50 | 8.35 | 3.68 | 3.68 | 3.08 | ||
8 | 10.35 | 5.41 | 5.89 | 10.35 | 10.92 | 11.01 | 3.69 | 3.69 | 3.13 | ||
16 | 11.96 | 8.77 | 8.44 | 11.96 | 12.64 | 13.10 | 3.73 | 5.70 | 3.24 |
Tab. 2 Performance comparison of various algorithms in MAE
数据集 | AVGL-MSE | AVGL-MAE | AVGL-Huber | AVGV-MSE | AVGV-MAE | AVGV-Hube | IDent | PIDent | PLR-FARC | ||
---|---|---|---|---|---|---|---|---|---|---|---|
FARCID | FARCPID | ||||||||||
Abalone | 2 | 2.15 | 1.48 | 1.48 | 2.15 | 2.15 | 1.69 | 1.49 | 1.42 | ||
4 | 2.75 | 1.56 | 1.64 | 2.75 | 2.75 | 2.77 | 1.48 | 1.52 | 1.45 | ||
8 | 3.10 | 1.95 | 2.07 | 3.10 | 3.10 | 3.46 | 1.52 | 1.50 | |||
16 | 3.16 | 2.88 | 2.87 | 3.16 | 3.16 | 3.62 | 1.55 | 1.48 | |||
Airfoil | 2 | 3.8 | 3.19 | 3.21 | 3.80 | 3.41 | 3.66 | 2.21 | 2.15 | 1.44 | |
4 | 4.16 | 3.26 | 3.30 | 4.16 | 3.97 | 3.99 | 2.26 | 2.51 | 1.53 | ||
8 | 4.80 | 3.65 | 3.74 | 4.80 | 4.66 | 5.02 | 2.99 | 3.29 | 1.52 | ||
16 | 5.40 | 4.33 | 4.44 | 5.40 | 5.18 | 5.40 | 4.07 | 4.33 | 2.48 | ||
Concrete | 2 | 8.17 | 5.14 | 5.10 | 8.17 | 7.79 | 7.79 | 4.78 | 4.77 | 4.47 | |
4 | 8.70 | 5.36 | 5.57 | 8.69 | 8.77 | 8.77 | 5.13 | 5.42 | 5.30 | ||
8 | 10.87 | 7.71 | 7.82 | 10.83 | 10.53 | 10.53 | 5.96 | 6.51 | 5.53 | ||
16 | 11.97 | 9.26 | 9.26 | 11.97 | 12.45 | 12.45 | 7.79 | 7.93 | 5.85 | ||
Cpu-act | 2 | 11.92 | 2.06 | 2.15 | 11.70 | 8.72 | 8.58 | 1.89 | 1.78 | ||
4 | 19.27 | 3.65 | 3.92 | 18.65 | 19.34 | 18.28 | 1.91 | 1.87 | 1.83 | ||
8 | 23.81 | 15.29 | 14.98 | 23.81 | 27.95 | 28.20 | 1.93 | 1.82 | 1.95 | ||
16 | 29.08 | 23.73 | 23.17 | 29.07 | 30.57 | 30.65 | 2.07 | 2.06 | 1.91 | ||
Housing | 2 | 4.15 | 2.99 | 3.33 | 4.15 | 4.97 | 5.06 | 3.22 | 2.16 | 2.64 | |
4 | 4.81 | 3.15 | 3.42 | 4.81 | 5.19 | 5.26 | 3.05 | 3.07 | 2.78 | ||
8 | 5.84 | 4.29 | 4.56 | 5.84 | 6.52 | 6.47 | 3.32 | 4.93 | 2.80 | ||
16 | 6.61 | 5.06 | 5.02 | 6.61 | 7.06 | 7.48 | 5.06 | 4.88 | 3.58 | ||
Power-plant | 2 | 6.45 | 3.88 | 3.86 | 6.45 | 5.37 | 5.71 | 3.70 | 3.70 | 3.04 | |
4 | 8.57 | 4.28 | 4.48 | 8.57 | 8.50 | 8.35 | 3.68 | 3.68 | 3.08 | ||
8 | 10.35 | 5.41 | 5.89 | 10.35 | 10.92 | 11.01 | 3.69 | 3.69 | 3.13 | ||
16 | 11.96 | 8.77 | 8.44 | 11.96 | 12.64 | 13.10 | 3.73 | 5.70 | 3.24 |
数据集 | AVGL-MSE | AVGL-MAE | AVGL-Huber | AVGV-MSE | AVGV-MAE | AVGV-Huber | IDent | PIDent | PLR-FARC | ||
---|---|---|---|---|---|---|---|---|---|---|---|
FARCID | FARCPID | ||||||||||
Abalone | 2 | 9.70 | 4.66 | 4.68 | 9.72 | 7.36 | 7.52 | 4.62 | 4.55 | 4.04 | |
4 | 14.42 | 5.04 | 5.22 | 14.08 | 14.08 | 14.04 | 4.66 | 4.58 | 4.08 | ||
8 | 20.63 | 7.76 | 7.94 | 22.68 | 22.68 | 21.28 | 4.70 | 4.71 | 4.22 | ||
16 | 25.11 | 13.77 | 14.03 | 26.71 | 26.71 | 26.61 | 4.90 | 4.90 | 4.65 | ||
Airfoil | 2 | 23.72 | 16.66 | 16.17 | 23.73 | 23.27 | 22.99 | 15.58 | 14.99 | 3.63 | |
4 | 30.79 | 18.47 | 18.56 | 30.83 | 30.67 | 30.22 | 16.23 | 16.10 | 4.05 | ||
8 | 37.19 | 24.67 | 24.40 | 37.16 | 39.24 | 38.19 | 17.81 | 17.86 | 5.96 | ||
16 | 42.90 | 31.43 | 30.81 | 43.00 | 45.38 | 44.19 | 23.41 | 24.11 | 7.46 | ||
Concrete | 2 | 108.08 | 46.66 | 48.62 | 108.23 | 107.46 | 106.00 | 42.14 | 40.48 | 32.73 | |
4 | 151.05 | 75.49 | 80.38 | 151.05 | 172.01 | 167.53 | 45.61 | 45.94 | 34.09 | ||
8 | 195.40 | 116.18 | 118.65 | 195.32 | 216.01 | 213.59 | 72.09 | 57.79 | 75.78 | ||
16 | 239.26 | 186.94 | 183.64 | 239.64 | 268.56 | 259.05 | 114.35 | 112.02 | 67.38 | ||
Cpu-act | 2 | 246.38 | 9.84 | 9.62 | 245.68 | 172.38 | 169.26 | 6.64 | 6.91 | 5.66 | |
4 | 461.69 | 33.15 | 34.58 | 461.05 | 525.78 | 520.64 | 7.00 | 7.38 | 5.74 | ||
8 | 730.38 | 335.04 | 333.92 | 730.93 | 858.55 | 852.76 | 7.48 | 7.90 | 5.97 | ||
16 | 972.73 | 738.42 | 735.89 | 996.21 | 1 107.80 | 1 106.00 | 9.48 | 9.11 | 6.58 | ||
Housing | 2 | 33.82 | 18.69 | 17.37 | 33.82 | 32.79 | 34.03 | 16.18 | 15.55 | 13.32 | |
4 | 48.82 | 26.78 | 26.82 | 48.80 | 51.87 | 53.67 | 21.59 | 22.49 | 13.74 | ||
8 | 60.87 | 38.18 | 39.19 | 60.90 | 64.02 | 62.23 | 29.82 | 26.87 | 21.42 | ||
16 | 75.30 | 52.24 | 53.06 | 75.29 | 84.18 | 77.00 | 39.88 | 41.09 | 23.44 | ||
Power-plant | 2 | 64.99 | 23.67 | 23.43 | 64.99 | 42.56 | 42.68 | 21.09 | 21.07 | 18.47 | |
4 | 104.61 | 29.24 | 29.47 | 104.61 | 98.36 | 98.41 | 21.29 | 21.28 | 19.15 | ||
8 | 153.07 | 153.07 | 48.99 | 153.07 | 167.96 | 166.21 | 21.21 | 21.36 | 19.24 | ||
16 | 204.32 | 204.32 | 105.45 | 204.31 | 225.97 | 221.17 | 21.31 | 21.34 | 19.98 |
Tab. 3 Performance comparison of various algorithms in MSE
数据集 | AVGL-MSE | AVGL-MAE | AVGL-Huber | AVGV-MSE | AVGV-MAE | AVGV-Huber | IDent | PIDent | PLR-FARC | ||
---|---|---|---|---|---|---|---|---|---|---|---|
FARCID | FARCPID | ||||||||||
Abalone | 2 | 9.70 | 4.66 | 4.68 | 9.72 | 7.36 | 7.52 | 4.62 | 4.55 | 4.04 | |
4 | 14.42 | 5.04 | 5.22 | 14.08 | 14.08 | 14.04 | 4.66 | 4.58 | 4.08 | ||
8 | 20.63 | 7.76 | 7.94 | 22.68 | 22.68 | 21.28 | 4.70 | 4.71 | 4.22 | ||
16 | 25.11 | 13.77 | 14.03 | 26.71 | 26.71 | 26.61 | 4.90 | 4.90 | 4.65 | ||
Airfoil | 2 | 23.72 | 16.66 | 16.17 | 23.73 | 23.27 | 22.99 | 15.58 | 14.99 | 3.63 | |
4 | 30.79 | 18.47 | 18.56 | 30.83 | 30.67 | 30.22 | 16.23 | 16.10 | 4.05 | ||
8 | 37.19 | 24.67 | 24.40 | 37.16 | 39.24 | 38.19 | 17.81 | 17.86 | 5.96 | ||
16 | 42.90 | 31.43 | 30.81 | 43.00 | 45.38 | 44.19 | 23.41 | 24.11 | 7.46 | ||
Concrete | 2 | 108.08 | 46.66 | 48.62 | 108.23 | 107.46 | 106.00 | 42.14 | 40.48 | 32.73 | |
4 | 151.05 | 75.49 | 80.38 | 151.05 | 172.01 | 167.53 | 45.61 | 45.94 | 34.09 | ||
8 | 195.40 | 116.18 | 118.65 | 195.32 | 216.01 | 213.59 | 72.09 | 57.79 | 75.78 | ||
16 | 239.26 | 186.94 | 183.64 | 239.64 | 268.56 | 259.05 | 114.35 | 112.02 | 67.38 | ||
Cpu-act | 2 | 246.38 | 9.84 | 9.62 | 245.68 | 172.38 | 169.26 | 6.64 | 6.91 | 5.66 | |
4 | 461.69 | 33.15 | 34.58 | 461.05 | 525.78 | 520.64 | 7.00 | 7.38 | 5.74 | ||
8 | 730.38 | 335.04 | 333.92 | 730.93 | 858.55 | 852.76 | 7.48 | 7.90 | 5.97 | ||
16 | 972.73 | 738.42 | 735.89 | 996.21 | 1 107.80 | 1 106.00 | 9.48 | 9.11 | 6.58 | ||
Housing | 2 | 33.82 | 18.69 | 17.37 | 33.82 | 32.79 | 34.03 | 16.18 | 15.55 | 13.32 | |
4 | 48.82 | 26.78 | 26.82 | 48.80 | 51.87 | 53.67 | 21.59 | 22.49 | 13.74 | ||
8 | 60.87 | 38.18 | 39.19 | 60.90 | 64.02 | 62.23 | 29.82 | 26.87 | 21.42 | ||
16 | 75.30 | 52.24 | 53.06 | 75.29 | 84.18 | 77.00 | 39.88 | 41.09 | 23.44 | ||
Power-plant | 2 | 64.99 | 23.67 | 23.43 | 64.99 | 42.56 | 42.68 | 21.09 | 21.07 | 18.47 | |
4 | 104.61 | 29.24 | 29.47 | 104.61 | 98.36 | 98.41 | 21.29 | 21.28 | 19.15 | ||
8 | 153.07 | 153.07 | 48.99 | 153.07 | 167.96 | 166.21 | 21.21 | 21.36 | 19.24 | ||
16 | 204.32 | 204.32 | 105.45 | 204.31 | 225.97 | 221.17 | 21.31 | 21.34 | 19.98 |
注意力模块 | 残差模块 | 算法 | 不同 | ||||
---|---|---|---|---|---|---|---|
2 | 4 | 8 | 16 | ||||
√ | × | PLR-FA | +IDent | 4.35 | 4.48 | 4.49 | 4.86 |
+PIDent | 4.27 | 4.41 | 4.68 | 4.77 | |||
× | √ | PLR-RC | +IDent | 4.28 | 4.34 | 4.63 | 4.82 |
+PIDent | 4.37 | 4.38 | 5.06 | 5.68 | |||
√ | √ | PLR-FARC | +IDent | 4.65 | |||
+PIDent | 4.04 | 4.08 | 4.22 |
Tab. 4 Performance comparison of ablation experiments on Abalone dataset in MSE
注意力模块 | 残差模块 | 算法 | 不同 | ||||
---|---|---|---|---|---|---|---|
2 | 4 | 8 | 16 | ||||
√ | × | PLR-FA | +IDent | 4.35 | 4.48 | 4.49 | 4.86 |
+PIDent | 4.27 | 4.41 | 4.68 | 4.77 | |||
× | √ | PLR-RC | +IDent | 4.28 | 4.34 | 4.63 | 4.82 |
+PIDent | 4.37 | 4.38 | 5.06 | 5.68 | |||
√ | √ | PLR-FARC | +IDent | 4.65 | |||
+PIDent | 4.04 | 4.08 | 4.22 |
[1] | TIAN Y, YU X, FU S. Partial label learning: taxonomy, analysis and outlook[J]. Neural Networks, 2023, 161: 708-734. |
[2] | JIA Y, PENG X, WANG R, et al. Long-tailed partial label learning by head classifier and tail classifier cooperation[C]// Proceedings of the 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2024: 12857-12865. |
[3] | LV J, XU M, FENG L, et al. Progressive identification of true labels for partial-label learning[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 6500-6510. |
[4] | WANG D B, ZHANG M L, LI L. Adaptive graph guided disambiguation for partial label learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 8796-8811. |
[5] | LIAO Z, XIE Y, HU S, et al. Learning from ambiguous labels for lung nodule malignancy prediction[J]. IEEE Transactions on Medical Imaging, 2022, 41(7): 1874-1884. |
[6] | XU Y Y, SHEN Y, WEI X S, et al. Weakly-supervised fine-grained recognition with partial label learning[C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence. California: ijcai.org, 2022: 1502-1508. |
[7] | YU X R, WANG D B, ZHANG M L. Partial label learning with emerging new labels[J]. Machine Learning, 2024, 113(4): 1549-1565. |
[8] | GONG X, YANG J, YUAN D, et al. Generalized large margin kNN for partial label learning[J]. IEEE Transactions on Multimedia, 2022, 24: 1055-1066. |
[9] | GU Y, CHEN Z, QIN Y, et al. DEER: distribution divergence-based graph contrast for partial label learning on graphs[J]. IEEE Transactions on Multimedia, 2024(Early Access): 1-16. |
[10] | LIN G Y, XIAO Z Y, LIU J T, et al. Feature space and label space selection based on error-correcting output codes for partial label learning[J]. Information Sciences, 2022, 589: 341-359. |
[11] | LIU L P, DIETTERICH T G. Learnability of the superset label learning problem[C]// Proceedings of the 31st International Conference on Machine Learning. New York: JMLR.org, 2014: 1629-1637. |
[12] | LV J, LIU B, FENG L, et al. On the robustness of average losses for partial-label learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(5): 2569-2583. |
[13] | XU N, LV J, GENG X. Partial label learning via label enhancement[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 5557-5564. |
[14] | CHENG X, WANG D B, FENG L, et al. Partial-label regression[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 7140-7147. |
[15] | YUAN X, HUANG L, YE L, et al. Quality prediction modeling for industrial processes using multiscale attention-based convolutional neural network[J]. IEEE Transactions on Cybernetics, 2024, 54(5): 2696-2707. |
[16] | HUANG W, DENG Y, HUI S, et al. Sparse self-attention transformer for image inpainting[J]. Pattern Recognition, 2024, 145: No.109897. |
[17] | WANG D, ZHAI L, FANG J, et al. psoResNet: an improved PSO-based residual network search algorithm[J]. Neural Networks, 2024, 172: No.106104. |
[18] | RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. |
[19] | WANG S, SHI J, YANG W, et al. High and low frequency wind power prediction based on Transformer and BiGRU-attention[J]. Energy, 2024, 288: No.129753. |
[20] | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
[21] | LIU T, HONG J, WANG J, et al. Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan[J]. Energy Storage Materials, 2022, 45: 1074-1083. |
[22] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
[23] | CHENG Y, QIAN K, MIN F. Global and local attention-based multi-label learning with missing labels[J]. Information Sciences, 2022, 594: 20-42. |
[24] | YU X, ZHANG D, ZHU T, et al. Novel hybrid multi-head self-attention and multifractal algorithm for non-stationary time series prediction[J]. Information Sciences, 2022, 613: 541-555. |
[25] | SHAFIQ M, GU Z. Deep residual learning for image recognition: a survey[J]. Applied Sciences, 2022, 12(18): No.8972. |
[26] | FERNÁNDEZ A J. Planning reliability demonstration tests with limited expected risks[J]. Computers and Industrial Engineering, 2022, 165: No.107918. |
[27] | NAIR P, VAKHARIA V, SHAH M, et al. AI-driven digital twin model for reliable lithium-ion battery discharge capacity predictions[J]. International Journal of Intelligent Systems, 2024, 2024: No.8185044. |
[28] | KARUNASINGHA D S K. Root mean square error or mean absolute error? use their ratio as well[J]. Information Sciences, 2022, 585: 609-629. |
[29] | GE W, WANG Y, XU Y, et al. Causality-driven intra-class non-equilibrium label-specific features learning[J]. Neural Processing Letters, 2024, 56(2): No.120. |
[30] | DEMŠAR J. Statistical comparisons of classifiers over multiple data sets[J]. Journal of Machine Learning Research, 2006, 7: 1-30. |
[1] | Haoyu LIU, Pengwei KONG, Yaoli WANG, Qing CHANG. Pedestrian detection algorithm based on multi-view information [J]. Journal of Computer Applications, 2025, 45(7): 2325-2332. |
[2] | Xiaoqiang ZHAO, Yongyong LIU, Yongyong HUI, Kai LIU. Batch process quality prediction model using improved time-domain convolutional network with multi-head self-attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2245-2252. |
[3] | Huibin WANG, Zhan’ao HU, Jie HU, Yuanwei XU, Bo WEN. Time series forecasting model based on segmented attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2262-2268. |
[4] | Yihan WANG, Chong LU, Zhongyuan CHEN. Multimodal sentiment analysis model with cross-modal text information enhancement [J]. Journal of Computer Applications, 2025, 45(7): 2237-2244. |
[5] | Chen LIANG, Yisen WANG, Qiang WEI, Jiang DU. Source code vulnerability detection method based on Transformer-GCN [J]. Journal of Computer Applications, 2025, 45(7): 2296-2303. |
[6] | Sheping ZHAI, Yan HUANG, Qing YANG, Rui YANG. Multi-view entity alignment combining triples and text attributes [J]. Journal of Computer Applications, 2025, 45(6): 1793-1800. |
[7] | Xiang WANG, Qianqian CUI, Xiaoming ZHANG, Jianchao WANG, Zhenzhou WANG, Jialin SONG. Wireless capsule endoscopy image classification model based on improved ConvNeXt [J]. Journal of Computer Applications, 2025, 45(6): 2016-2024. |
[8] | Weigang LI, Xinyi LI, Yongqiang WANG, Yuntao ZHAO. Point cloud classification and segmentation method based on adaptive dynamic graph convolution and parameter-free attention [J]. Journal of Computer Applications, 2025, 45(6): 1980-1986. |
[9] | Haijie WANG, Guangxin ZHANG, Hai SHI, Shu CHEN. Document-level relation extraction based on entity representation enhancement [J]. Journal of Computer Applications, 2025, 45(6): 1809-1816. |
[10] | Yuan SONG, Xin CHEN, Yarong LI, Yongwei LI, Yang LIU, Zhen ZHAO. Single-channel speech separation model based on auditory modulation Siamese network [J]. Journal of Computer Applications, 2025, 45(6): 2025-2033. |
[11] | Hui LI, Bingzhi JIA, Chenxi WANG, Ziyu DONG, Jilong LI, Zhaoman ZHONG, Yanyan CHEN. Generative adversarial network underwater image enhancement model based on Swin Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1439-1446. |
[12] | Dan WANG, Wenhao ZHANG, Lijuan PENG. Channel estimation of reconfigurable intelligent surface assisted communication system based on deep learning [J]. Journal of Computer Applications, 2025, 45(5): 1613-1618. |
[13] | Man CHEN, Xiaojun YANG, Huimin YANG. Pedestrian trajectory prediction based on graph convolutional network and endpoint induction [J]. Journal of Computer Applications, 2025, 45(5): 1480-1487. |
[14] | Lu CHEN, Huaiyao WANG, Jingyang LIU, Tao YAN, Bin CHEN. Robotic grasp detection with feature fusion of spatial-Fourier domain information under low-light environments [J]. Journal of Computer Applications, 2025, 45(5): 1686-1693. |
[15] | Liwei ZHANG, Quan LIANG, Yutao HU, Qiaole ZHU. Channel shuffle attention mechanism based on group convolution [J]. Journal of Computer Applications, 2025, 45(4): 1069-1076. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||